MATH 155: PROBLEM SET 1

Due Thursday, April 12.

1. Find asymptotic formulae for $\sum_{n \leq x} \frac{\log n}{n}$ and $\sum_{n \leq x} n^{-1 / \pi}$. Your error terms should be of size $O((\log x) / x)$ and $O\left(x^{-1 / \pi}\right)$ respectively.
2. Give an example of a non-negative function f such that $f(x)=o\left(x^{\epsilon}\right)$ for any fixed $\epsilon>0$, but such that $(\log x)^{A}=o(f(x))$ for any fixed $A>0$. We would say colloquially that f grows faster than any power of $\log x$ but slower than any power of x.
3. For all large n prove that $\omega(n) \ll \log n / \log \log n$ where $\omega(n)$ counts the number of distinct prime factors of n.
4. In class we showed that

$$
N!=C \sqrt{N}\left(\frac{N}{e}\right)^{N}\left(1+O\left(\frac{1}{N}\right)\right)
$$

for some positive constant C. In this (challenging) exercise we shall determine that $C=\sqrt{2 \pi}$.
(a). In the formula $2^{2 N}=\sum_{k=0}^{2 N}\binom{2 N}{k}$ show that the terms are increasing in the range $0 \leq k \leq N$ and decreasing thereafter.
(b). If $k=N+\ell$ with $|\ell| \leq N^{2 / 3}$ show that

$$
\binom{2 N}{k}=\frac{\sqrt{2}}{C \sqrt{N}} 2^{2 N} e^{-\ell^{2} / N+O\left(|\ell|^{3} / N^{2}\right)}
$$

You may find useful here to recall the Taylor approximation for $\log (1+x)$ for small values of x.
(c). Using (a) and (b) explain why for large N we must have

$$
2^{2 N} \sim \frac{\sqrt{2}}{C \sqrt{N}} 2^{2 N} \int_{-\infty}^{\infty} e^{-t^{2} / N} d t
$$

and conclude that $C=\sqrt{2 \pi}$.
5. This exercise recaps and makes precise the Euler-Maclaurin summation formula that we discussed in class. The Bernoulli polynomials $B_{k}(x)$ for $k \geq 0$ are defined by setting $B_{0}(x)=1$ for all x, and for $k \geq 1$ we have

$$
\frac{d}{d x} B_{k}(x)=k B_{k-1}(x)
$$

and

$$
\int_{0}^{1} B_{k}(x) d x=0
$$

You may check that $B_{1}(x)=x-1 / 2, B_{2}(x)=x^{2}-x+1 / 6$ etc.
Using induction on K establish the Euler-Maclaurin formula

$$
\begin{aligned}
\sum_{a<n \leq b} f(n) & =\int_{a}^{b} f(x) d x+\sum_{k=1}^{K} \frac{(-1)^{k}}{k!}\left(B_{k}(\{b\}) f^{(k-1)}(b)-B_{k}(\{a\}) f^{(k-1)}(a)\right) \\
& -\frac{(-1)^{K}}{K!} \int_{a}^{b} B_{K}(\{x\}) f^{(K)}(x) d x
\end{aligned}
$$

