MATH 155: PROBLEM SET 1

Due Thursday, April 12.

- 1. Find asymptotic formulae for $\sum_{n \leq x} \frac{\log n}{n}$ and $\sum_{n \leq x} n^{-1/\pi}$. Your error terms should be of size $O((\log x)/x)$ and $O(x^{-1/\pi})$ respectively.
- 2. Give an example of a non-negative function f such that $f(x) = o(x^{\epsilon})$ for any fixed $\epsilon > 0$, but such that $(\log x)^A = o(f(x))$ for any fixed A > 0. We would say colloquially that f grows faster than any power of $\log x$ but slower than any power of x.
- 3. For all large n prove that $\omega(n) \ll \log n/\log\log n$ where $\omega(n)$ counts the number of distinct prime factors of n.
- 4. In class we showed that

$$N! = C\sqrt{N} \left(\frac{N}{e}\right)^N \left(1 + O\left(\frac{1}{N}\right)\right)$$

for some positive constant C. In this (challenging) exercise we shall determine that $C = \sqrt{2\pi}$

- (a). In the formula $2^{2N} = \sum_{k=0}^{2N} {2N \choose k}$ show that the terms are increasing in the range $0 \le k \le N$ and decreasing thereafter.
 - (b). If $k = N + \ell$ with $|\ell| < N^{2/3}$ show that

$$\binom{2N}{k} = \frac{\sqrt{2}}{C\sqrt{N}} 2^{2N} e^{-\ell^2/N + O(|\ell|^3/N^2)}.$$

You may find useful here to recall the Taylor approximation for $\log(1+x)$ for small values of x.

(c). Using (a) and (b) explain why for large N we must have

$$2^{2N} \sim \frac{\sqrt{2}}{C\sqrt{N}} 2^{2N} \int_{-\infty}^{\infty} e^{-t^2/N} dt,$$

and conclude that $C = \sqrt{2\pi}$.

5. This exercise recaps and makes precise the Euler-Maclaurin summation formula that we discussed in class. The Bernoulli polynomials $B_k(x)$ for $k \geq 0$ are defined by setting $B_0(x) = 1$ for all x, and for $k \geq 1$ we have

$$\frac{d}{dx}B_k(x) = kB_{k-1}(x)$$

and

$$\int_0^1 B_k(x)dx = 0.$$

You may check that $B_1(x) = x - 1/2$, $B_2(x) = x^2 - x + 1/6$ etc. Using induction on K establish the Euler-Maclaurin formula

$$\sum_{a < n \le b} f(n) = \int_{a}^{b} f(x)dx + \sum_{k=1}^{K} \frac{(-1)^{k}}{k!} (B_{k}(\{b\})) f^{(k-1)}(b) - B_{k}(\{a\}) f^{(k-1)}(a))$$
$$- \frac{(-1)^{K}}{K!} \int_{a}^{b} B_{K}(\{x\}) f^{(K)}(x) dx.$$