DIRICHLET’S THEOREM ON PRIMES IN PROGRESSIONS, II

K. SOUNDARARAJAN

In the previous article we established Dirichlet’s theorem when the modulus is 4. Let
us now consider a few more cases of that argument until we can see clearly the strategy of
the general proof.

Let us begin with the case ¢ = 3. In analogy with our argument for ¢ = 4 we introduce
the function

1  ifn=1 (mod 3)
X—3(n)=1< 0 if 3|n
—1 ifn=2 (mod 3).

Notice that x_3(n), like x_4, is a multiplicative function. Define
o0
X—3(n) 1 1 1 1
L(S’X_3):ZT:F__+___+”"
n=1

and note that the series converges absolutely when s > 1, and conditionally (using the
alternating series test) when s > 0. Moreover by the multiplicativity of x_3 we see that
for s > 1 there holds the Euler product

1) Lisovos) =[] (1 - 2227

p

Taking logarithms in (1) we find that for s > 1

log L(s, x—3) = Z —log (1 — X_;S<p)) = ; (X_;S(p) + O(pis>>

_ Z X—38(p) + O(l)

p

Recalling that

ma@=2;+mm

p
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we obtain that

1
(2) 2 > o = log((s) +log L(s,x-3) + O(1),
p=1 (ﬁlod 3)
and that
1
(3) 2 > o = 108¢(s) ~log L(s,x-3) + O(1).
p=2 (ﬁmd 3)

As in the case (mod 4) we see that the proof of the infinitude of primes in the residue
classes (mod 3) rests on the behavior of L(s,x_3) as s — 1. If this limiting value is not
zero or infinity then we are done! Now, as s — 17 we see that

+ +...,

A~ =
(S

=] =
N =

L(s,x—3) — L(1,x-3) =

and this sum converges (and so is not infinity), and moreover is visibly positive (and so is
not zero). Moreover, as in the case of x_4 we may even evaluate L(1, x_3). Namely,

1 1
L(1,X_3):/ (1—t+t3—t4+t6—t7+...)dt:/ (1=t + 4+t +...)dt
0 0

/1 1—t /1 dt
= — _dt = -
o 1—13 o t24+t+1

Using this in (2) and (3) we conclude:

Corollary 1. As s — 17 we have

Z lszllog ! +0(1),

p=1 (mod 3) p s—1

and

1 1 1

s—1
p=2 (mod 3)

In particular, there are infinitely many primes in the residue classes 1 (mod 3) and 2
(mod 3).

Next let us turn to the case ¢ = 8. Here we must distinguish between four congruence
classes 1 (mod 8), 3 (mod 8), 5 (mod 8) and 7 (mod 8). Accordingly we look for four
functions which are multiplicative, and which are periodic with period 8, and we shall use
these to construct more L-functions. We have already encountered two of these: namely,
the function 1 on all natural numbers which is periodic with period 8 and multiplicative
and which gives rise to ((s), and the function y_4 defined in our previous notes which is
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periodic with period 4 and therefore with period 8 and which gave rise to L(s, x—4). There
are two further functions: these are

1 ifn=1,7 (mod 8)
xs(n)=4¢ 0 if2jn
—1 ifn=3,5 (mod 8),

and
1  ifn=1,3 (mod )

X—s(n) =< 0 if2ln
—1 ifn=5,7 (mod 8).
From their definitions it is evident that these are periodic with period 8 and you should

verify that they are also multiplicative. You may also note the interesting fact that
Xs(n)x—4(n) = x—s(n). Corresponding to ys and x_g we define the L-functions

L(s, xs) = i Xé;(sn) _ H <1 _ Xs(p)>_1,

s
p p

and

L(s,x—-g) = Z X_8§

n

n) x-s(n) ) -
= 1—=) .
[0~
p
Taking logarithms we obtain as before that

log Lis. ) = 252+ o),

and

log L(s, x-s) = Z X—;S(P) +0(1).

We may use x4, Xs, X—s (together with the function that is 1 always) to distinguish
between the four reduced residue classes (mod 8). If n is odd note that

{1 if n=1 (mod 8)

i(l + x—4(n) + xs(n) + X—8(n>> “ 10 ifnot.

Similarly
1 ifn=3 (mod 8)

0 otherwise;

(1= xa(m) = xa) 4 x-a) = §

|

if n =5 (mod 8)

0 otherwise;

(1 xa(m) = xa) = xoal)) = §

A



4 K. SOUNDARARAJAN

and lastly

1 ifn=7 (mod 8)
0 otherwise.

£ (1= Xl + xslo) = xs(w) = {

It therefore follows that (for s > 1)

Z ]% = i(logC(s) +log L(s, x—_4) + log L(s, xg) + log L(s, X—8)> +O(1),

p
p=1 (mod &)

and similar expressions with varying signs hold for the sums over primes in the other three
residue classes. We know that as s — 17 the log ((s) term becomes log(1/(s — 1)) + O(1),
and to obtain the infinitude of primes in the progressions (mod 8) we must show that the
other three L-functions tend neither to zero nor infinity as s — 1. We have already seen
this for L(s,x_4) which tends to 7/4 as s — 11. As s — 1T we see that

o) o1 bl l i 1 1 1
—-1l—--——-4+=-+=-——= ==+ —=+4...
%1 X8 3 57779 11 13 15 )

which by grouping every four terms together we may see both converges, and is strictly
positive. Moreover in your homework you will even have determined its value. Similar
conclusions apply to L(s, x—g) and we finally deduce

Corollary 2. As s — 17 and fora=1, 3, 5, or 7T we have

1 1 1
Y=l 1
. 40g8_1+0( ),

p=a (mod 8)

and so there are infinitely many primes = a (mod 8).

Now let us consider the case ¢ = 5. We must find primes in the four progressions 1,
2,3 or 4 (mod 5), and in order to distinguish these four cases we seek four multiplicative
functions that are also periodic (mod 5). As usual one of these is the function that is one
always. Another such function is the Legendre symbol (mod 5); we call this x5 so that

1  ifn=1,4 (mod5)
xs(n)=4¢ 0 if 5n
—1 ifn=2,3 (mod 5).

How should we find mulitplicative functions that are periodic (mod 5)?7 Let x denote
such a function, and we suppose that x is not identically zero; note that this means
x(n) = x(1-n) = x(1)x(n) so that x(1) = 1. We also suppose that x(n) = 0 if 5|n since we
are only interested in the reduced residue classes (mod 5). Since x is periodic (mod 5),
x(n) depends only on n (mod 5). Note that the group of reduced residues (mod 5) is
generated by the residue class 2 (mod 5). Thus if we define x(2) then x(4) = x(2)?,
x(2)% = x(23) = x(3), and x(2)* = x(2%) = x(1) and x would be defined on all integers.
Our last observation also gives that x(2)* = x(1) = 1 so that the only way to define x(2) is
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to take it to be a fourth root of unity: namely x(2) = 1, —1, i or —i. Each of these choices
for x(2) gives rise to a periodic (mod 5) multiplicative function. Taking x(2) = 1 gives
essentially the function that is one always although we see now that it is more consistent
to set it to be 1 if (n,5) = 1 and 0 otherwise; we call this function yo. Taking x(2) = —1
gives us the Legendre symbol x5 mentioned above. We shall denote the choice i by just x;
so x is the function that is given by x(2) =4, x(3) = —i and x(4) = —1. The other choice
of —i gives the complex conjugate of y; namely Y (2) = —i, X(3) =4, x(4) = —1 etc. We
may summarize our findings in the following table:

n 1 2 3 4
xo 1 1 1 1
xs 1 -1 -1 1
x 1 ¢+ - -1
X 1 —i ¢ -1

To each of these four functions xq, x5, x and Y we may associate L-functions which are
given by a series over all natural numbers and also by a product over primes. Note that

L(s, xo) :1;[<1_ Xo(p)>—1 =H<1—]%)_1 :Q’(S)H(l_pis)’

S
P plq plq

so that for s > 1

(4)  log L(s,x0) =log((s Zlog (1-1/p%) =log((s)+O(1) =log E i 1 +0(1).

plq

Next,

(5) log L(s, xs) = 3~ @) oq1).

, P

The expressions for log L(s, x) and log L(s,X) are similar, except that we are now taking
logarithms of complex numbers. All that we use is that if 2 is a complex number with |z| < 1
then, as in the real case, we may write a series expansion log(1+2) = 2 —22/2+23/3—. ..
which will converge and have the property that its exponential will give 1+ 2. The complex
log is multivalued as we can add any multiple of 27 and use that €2 = 1, but the series
that we chose is the natural one, because as z — 0 one would like to have log(1 + z) — 0
as well. In any case, we have for |z| < 1, log(1 + 2) = 2z + O(z?) as before, and hence

(6) log L(s, x) Z x(p

(7) log L(s,%X) :Z
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By inspecting our table above we may write each of the four reduced residue classes
(mod 5) as a linear combination of our functions xo, X5, x and X. For example, if 5t n
then 1(xo(n) 4+ xs(n) + x(n) +X(n)) is 1 if n = 1 (mod 5) and 0 otherwise. Similarly
1 (xo(n) = x5(n) —ix(n) +ix(n)) is 1 if n =2 (mod 5) and 0 otherwise. You should find
the analogous expressions for n = 3 (mod 5) and n =4 (mod 5). Using these expressions
in (4, 5, 6, 7) we find that

1 1
> = 7108 L(s, x0) +1og L(s, x5) +log L(s, ) +log L(s,X) ) + O(1),
p=1 (mod 5)

and similar expressions hold for the other residue classes; for example,

1 1
Y == Z<10g L(s, x0) — log L(s, x5) — ilog L(s, x) +ilog L(s&)) +0(1).
p=2 (mod 5)

By (4) we see that the log L(s, xo) term gives a contribution that goes to infinity as s — 1+.
So all will be well if we can show once again that the other L-functions go to values not
equal to zero or infinity as s — 1.

Now
1 1 1 1 1 1 1 1
Looe) = (g5t 3) (G 75 te) to
and grouping terms as above we may see both that the series converges to some finite answer
as s — 17, and also that the answer is strictly positive. Moreover in your homework you
were asked to evaluate this. Similarly

L(S,X):(1+;————)+...,

and we see that the real and imaginary parts give alternating series that converge; moreover
the real parts and imaginary parts above are seen to be strictly positive. Similarly for
L(s,X) which is just the complex conjugate of L(s,x) (so that its real part is positive, and
its imaginary part negative). We have thus proved Dirichlet’s theorem (mod 5)!

Corollary 3. As s — 17 and fora =1, 2, 3, or 4 we have

1 1 1
Z _s:ZIOg(S_l)—i_O(l)’

p=a (mod 5)

and in particular there are infinitely many primes p = a (mod 5).



