BERTRAND’S POSTULATE

For every natural number n > 2, Bertrand’s postulate says that there is a prime between
n and 2n. Bertrand checked this numerically for many values of n, but the result was first
established by the Russian mathematician Chebyshev in 1850. We give a proof due to
Paul Erdés which builds upon an idea of Ramanujan.

The main idea is to look at the prime factorization of the binomial coefficient (2:) We
first record what this factorization looks like.

Proposition 1. In the prime factorization of (277), the prime p appears to the power

[&.9]

> (- [5])

k=1

Note only primes below 2n appear in the factorization. Every prime in [n+ 1,2n) appears
to the exponent 1. If n > 5, no prime in (2n/3,n| can divide (27?) Any prime p >
V2n appears to exponent 0 or 1, and a prime p < v/2n appears to exponent at most
log(2n)/ log p.

Proof. Recall that the power of p that divides n! is Y ;- ;[n/p"*]. Therefore, the power of
p that divides (2:;) is

o 5 (2] -2[2)

Note that although we wrote an infinite sum above, only finitely many terms are non-zero.
Also note that [2x] — 2[x] takes only the values 0 (if the fractional part of = is < 1/2) and
1 (if the fractional part is > 1/2). If p > v/2n then only the term k& = 1 in (1) can be
non-zero, and so such a prime appears to exponent 0 or 1. If p < v/2n then only the terms
with 1 < k <log(2n)/logp can be non-zero in (1), and so such a prime appears at most
to the exponent log(2n)/log p. We have justified the last assertion in our Proposition.

To justify the first two, note that if 2n > p > n 4+ 1(> v/2n) then only the term k = 1
in (1) matters, and [2n/p] —2[n/p] =1 —-0=1. If n > 5 and n > p > 2n/3 > v/2n, again
only k£ = 1 matters and here [2n/p] — 2[n/p] = 2 — 2 = 0. This completes our proof.

Next we give a lower bound for the size of the middle binomial coefficient (2:)

2n 22n
> —
n/) = 2n

Proposition 2. Forn > 1 we have
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Proof. If n > 1 then the middle binomial coefficient is the largest of the binomial coeffi-

cients (2;1), and moreover it is at least 2 = (251) + (32) Thus

Cr) 2 a0~ G+ () () = 5

Proposition 3. For all real numbers x > 1 we have

Hp§4m.

p<z

Granting for the moment Proposition 3, let us now prove Bertrand’s postulate.
Theorem. For every n > 1 there is a prime in [n + 1,2n].

Proof. Let us suppose that n > 500, and that there is no prime in [n + 1,2n]. By Propo-
sitions 1 and 2 we have that

2n
27 () o ] poscriiosr [ »
2n — \n /) — ’

p<+V2n V2n<p<2n/3

where in the upper bound above we used that there are no primes in [n + 1,2n| and that
no prime in (2n/3,n] can divide (2;:) Using Proposition 3, we obtain that

Z < (2”) X 4277,/3 — (27.L)7r(\/%)4271/37
p<V2n

or simplifying that
221/3 < (2n)™(VEMHL < (2n)V2n,

Using calculus you can check that this inequality cannot hold if n > 500. Thus Bertrand’s
postulate must be true for n > 500.
Note that
2,3,5,7,13,23,43,83,163, 317,631

is a sequence of prime numbers each successive term of which is less than twice the previous
one. This verifies Bertrand’s postulate for n up to 500.

Proof of Proposition 3. 1t suffices to establish the Proposition when x is an integer. Clearly
the result is true for x = 1 and x = 2. Now suppose the result holds for all integers 1,
2, ..., — 1 and we want to establish it for x. If x > 4 is even then x is not prime, and
HpSpr - Hpﬁx—lp < 4Tl <.

Now suppose that x = 2n 4+ 1 is odd. Arguing as in Proposition 1 we may easily see
that every prime p in [n + 2,2n + 1] divides the binomial coefficient (Q"JI). Therefore,
using our induction hypothesis,

2) I o= re DI wseox (™)

p<2n+1 p<n+1 n+2<p<2n-+1
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Now (2”:'1) = (277:11) and so

2 1 2 1 2 1 2 1 2 1
9 n+ _ n—+ n n+ < n—+ N n—+ :22,1“,
n n n+1 0 2n +1
or in other words, (2”;1) < 22", Inserting this in (2) we conclude that

I I P < 4n—|—1 X 4" — 42n—|—1
— Y
p<2n-+1

which establishes our induction step, and hence Proposition 3.



