BERTRAND'S POSTULATE

For every natural number $n \geq 2$, Bertrand's postulate says that there is a prime between n and $2 n$. Bertrand checked this numerically for many values of n, but the result was first established by the Russian mathematician Chebyshev in 1850 . We give a proof due to Paul Erdős which builds upon an idea of Ramanujan.

The main idea is to look at the prime factorization of the binomial coefficient $\binom{2 n}{n}$. We first record what this factorization looks like.
Proposition 1. In the prime factorization of $\binom{2 n}{n}$, the prime p appears to the power

$$
\sum_{k=1}^{\infty}\left(\left[\frac{2 n}{p^{k}}\right]-\left[\frac{n}{p^{k}}\right]\right)
$$

Note only primes below $2 n$ appear in the factorization. Every prime in $[n+1,2 n)$ appears to the exponent 1. If $n \geq 5$, no prime in $(2 n / 3, n]$ can divide $\binom{2 n}{n}$. Any prime $p>$ $\sqrt{2 n}$ appears to exponent 0 or 1 , and a prime $p \leq \sqrt{2 n}$ appears to exponent at most $\log (2 n) / \log p$.
Proof. Recall that the power of p that divides n ! is $\sum_{k=1}^{\infty}\left[n / p^{k}\right]$. Therefore, the power of p that divides $\binom{2 n}{n}$ is

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\left[\frac{2 n}{p^{k}}\right]-2\left[\frac{n}{p^{k}}\right]\right) \tag{1}
\end{equation*}
$$

Note that although we wrote an infinite sum above, only finitely many terms are non-zero. Also note that $[2 x]-2[x]$ takes only the values 0 (if the fractional part of x is $<1 / 2$) and 1 (if the fractional part is $\geq 1 / 2$). If $p>\sqrt{2 n}$ then only the term $k=1$ in (1) can be non-zero, and so such a prime appears to exponent 0 or 1 . If $p \leq \sqrt{2 n}$ then only the terms with $1 \leq k \leq \log (2 n) / \log p$ can be non-zero in (1), and so such a prime appears at most to the exponent $\log (2 n) / \log p$. We have justified the last assertion in our Proposition.

To justify the first two, note that if $2 n \geq p \geq n+1(>\sqrt{2 n})$ then only the term $k=1$ in (1) matters, and $[2 n / p]-2[n / p]=1-0=1$. If $n \geq 5$ and $n \geq p>2 n / 3>\sqrt{2 n}$, again only $k=1$ matters and here $[2 n / p]-2[n / p]=2-2=0$. This completes our proof.

Next we give a lower bound for the size of the middle binomial coefficient $\binom{2 n}{n}$.
Proposition 2. For $n \geq 1$ we have

$$
\binom{2 n}{n} \geq \frac{2^{2 n}}{2 n}
$$

Proof. If $n \geq 1$ then the middle binomial coefficient is the largest of the binomial coefficients $\binom{2 n}{j}$, and moreover it is at least $2=\binom{2 n}{0}+\binom{2 n}{2 n}$. Thus

$$
\binom{2 n}{n} \geq \frac{1}{2 n}\left(\left\{\binom{2 n}{0}+\binom{2 n}{2 n}\right\}+\binom{2 n}{1}+\ldots+\binom{2 n}{2 n-1}\right)=\frac{2^{2 n}}{2 n}
$$

Proposition 3. For all real numbers $x \geq 1$ we have

$$
\prod_{p \leq x} p \leq 4^{x}
$$

Granting for the moment Proposition 3, let us now prove Bertrand's postulate.
Theorem. For every $n \geq 1$ there is a prime in $[n+1,2 n]$.
Proof. Let us suppose that $n \geq 500$, and that there is no prime in $[n+1,2 n]$. By Propositions 1 and 2 we have that

$$
\frac{2^{2 n}}{2 n} \leq\binom{ 2 n}{n} \leq \prod_{p \leq \sqrt{2 n}} p^{\log (2 n) / \log p} \prod_{\sqrt{2 n}<p \leq 2 n / 3} p
$$

where in the upper bound above we used that there are no primes in $[n+1,2 n]$ and that no prime in $(2 n / 3, n]$ can divide $\binom{2 n}{n}$. Using Proposition 3, we obtain that

$$
\frac{2^{2 n}}{2 n} \leq \prod_{p \leq \sqrt{2 n}}(2 n) \times 4^{2 n / 3}=(2 n)^{\pi(\sqrt{2 n})} 4^{2 n / 3}
$$

or simplifying that

$$
2^{2 n / 3} \leq(2 n)^{\pi(\sqrt{2 n})+1}<(2 n)^{\sqrt{2 n}}
$$

Using calculus you can check that this inequality cannot hold if $n \geq 500$. Thus Bertrand's postulate must be true for $n \geq 500$.

Note that

$$
2,3,5,7,13,23,43,83,163,317,631
$$

is a sequence of prime numbers each successive term of which is less than twice the previous one. This verifies Bertrand's postulate for n up to 500 .
Proof of Proposition 3. It suffices to establish the Proposition when x is an integer. Clearly the result is true for $x=1$ and $x=2$. Now suppose the result holds for all integers 1 , $2, \ldots, x-1$ and we want to establish it for x. If $x \geq 4$ is even then x is not prime, and $\prod_{p \leq x} p=\prod_{p \leq x-1} p \leq 4^{x-1}<4^{x}$.

Now suppose that $x=2 n+1$ is odd. Arguing as in Proposition 1 we may easily see that every prime p in $[n+2,2 n+1]$ divides the binomial coefficient $\binom{2 n+1}{n}$. Therefore, using our induction hypothesis,

$$
\begin{equation*}
\prod_{p \leq 2 n+1} p=\prod_{p \leq n+1} p \times \prod_{n+2 \leq p \leq 2 n+1} p \leq 4^{n+1} \times\binom{ 2 n+1}{n} \tag{2}
\end{equation*}
$$

Now $\binom{2 n+1}{n}=\binom{2 n+1}{n+1}$ and so

$$
2\binom{2 n+1}{n}=\binom{2 n+1}{n}+\binom{2 n+1}{n+1}<\binom{2 n+1}{0}+\ldots+\binom{2 n+1}{2 n+1}=2^{2 n+1}
$$

or in other words, $\binom{2 n+1}{n} \leq 2^{2 n}$. Inserting this in (2) we conclude that

$$
\prod_{p \leq 2 n+1} p \leq 4^{n+1} \times 4^{n}=4^{2 n+1}
$$

which establishes our induction step, and hence Proposition 3.

