
BERTRAND’S POSTULATE

For every natural number n ≥ 2, Bertrand’s postulate says that there is a prime between
n and 2n. Bertrand checked this numerically for many values of n, but the result was first
established by the Russian mathematician Chebyshev in 1850. We give a proof due to
Paul Erdős which builds upon an idea of Ramanujan.

The main idea is to look at the prime factorization of the binomial coefficient
(
2n
n

)
. We

first record what this factorization looks like.

Proposition 1. In the prime factorization of
(
2n
n

)
, the prime p appears to the power

∞∑
k=1

(
[
2n

pk
]−

[ n

pk

])
.

Note only primes below 2n appear in the factorization. Every prime in [n + 1, 2n) appears
to the exponent 1. If n ≥ 5, no prime in (2n/3, n] can divide

(
2n
n

)
. Any prime p >√

2n appears to exponent 0 or 1, and a prime p ≤
√

2n appears to exponent at most
log(2n)/ log p.

Proof. Recall that the power of p that divides n! is
∑∞

k=1[n/pk]. Therefore, the power of
p that divides

(
2n
n

)
is

(1)
∞∑

k=1

([2n

pk

]
− 2

[ n

pk

])
.

Note that although we wrote an infinite sum above, only finitely many terms are non-zero.
Also note that [2x]− 2[x] takes only the values 0 (if the fractional part of x is < 1/2) and
1 (if the fractional part is ≥ 1/2). If p >

√
2n then only the term k = 1 in (1) can be

non-zero, and so such a prime appears to exponent 0 or 1. If p ≤
√

2n then only the terms
with 1 ≤ k ≤ log(2n)/ log p can be non-zero in (1), and so such a prime appears at most
to the exponent log(2n)/ log p. We have justified the last assertion in our Proposition.

To justify the first two, note that if 2n ≥ p ≥ n + 1(>
√

2n) then only the term k = 1
in (1) matters, and [2n/p]− 2[n/p] = 1− 0 = 1. If n ≥ 5 and n ≥ p > 2n/3 >

√
2n, again

only k = 1 matters and here [2n/p]− 2[n/p] = 2− 2 = 0. This completes our proof.

Next we give a lower bound for the size of the middle binomial coefficient
(
2n
n

)
.

Proposition 2. For n ≥ 1 we have (
2n

n

)
≥ 22n

2n
.
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Proof. If n ≥ 1 then the middle binomial coefficient is the largest of the binomial coeffi-
cients

(
2n
j

)
, and moreover it is at least 2 =

(
2n
0

)
+

(
2n
2n

)
. Thus(

2n

n

)
≥ 1

2n

({(
2n

0

)
+

(
2n

2n

)}
+

(
2n

1

)
+ . . . +

(
2n

2n− 1

))
=

22n

2n
.

Proposition 3. For all real numbers x ≥ 1 we have∏
p≤x

p ≤ 4x.

Granting for the moment Proposition 3, let us now prove Bertrand’s postulate.

Theorem. For every n ≥ 1 there is a prime in [n + 1, 2n].

Proof. Let us suppose that n ≥ 500, and that there is no prime in [n + 1, 2n]. By Propo-
sitions 1 and 2 we have that

22n

2n
≤

(
2n

n

)
≤

∏
p≤
√

2n

plog(2n)/ log p
∏

√
2n<p≤2n/3

p,

where in the upper bound above we used that there are no primes in [n + 1, 2n] and that
no prime in (2n/3, n] can divide

(
2n
n

)
. Using Proposition 3, we obtain that

22n

2n
≤

∏
p≤
√

2n

(2n)× 42n/3 = (2n)π(
√

2n)42n/3,

or simplifying that
22n/3 ≤ (2n)π(

√
2n)+1 < (2n)

√
2n.

Using calculus you can check that this inequality cannot hold if n ≥ 500. Thus Bertrand’s
postulate must be true for n ≥ 500.

Note that
2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631

is a sequence of prime numbers each successive term of which is less than twice the previous
one. This verifies Bertrand’s postulate for n up to 500.

Proof of Proposition 3. It suffices to establish the Proposition when x is an integer. Clearly
the result is true for x = 1 and x = 2. Now suppose the result holds for all integers 1,
2, . . . , x − 1 and we want to establish it for x. If x ≥ 4 is even then x is not prime, and∏

p≤x p =
∏

p≤x−1 p ≤ 4x−1 < 4x.
Now suppose that x = 2n + 1 is odd. Arguing as in Proposition 1 we may easily see

that every prime p in [n + 2, 2n + 1] divides the binomial coefficient
(
2n+1

n

)
. Therefore,

using our induction hypothesis,

(2)
∏

p≤2n+1

p =
∏

p≤n+1

p×
∏

n+2≤p≤2n+1

p ≤ 4n+1 ×
(

2n + 1
n

)
.
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Now
(
2n+1

n

)
=

(
2n+1
n+1

)
and so

2
(

2n + 1
n

)
=

(
2n + 1

n

)
+

(
2n + 1
n + 1

)
<

(
2n + 1

0

)
+ . . . +

(
2n + 1
2n + 1

)
= 22n+1,

or in other words,
(
2n+1

n

)
≤ 22n. Inserting this in (2) we conclude that∏

p≤2n+1

p ≤ 4n+1 × 4n = 42n+1,

which establishes our induction step, and hence Proposition 3.


