
MATH 152 Problem set 9 solutions

1. In both (a) and (b), we simply expand the left-hand side and use orthogonality
relations. For (a),

∑
χ (mod q)

∣∣∣ q∑
n=1

cnχ(n)
∣∣∣2

=
∑
χ

( q∑
n=1

cnχ(n)
)( q∑

m=1

cmχ(m)
)

=
∑
χ

∑
1≤n,m≤q

cncmχ(n)χ(m)

=
∑
χ

∑
n

cncnχ(n)χ(n)

by the second orthogonality relation. Since χ(n)χ(n) = 1 if (n, q) = 1 and 0 otherwise, this
equals ∑

χ

∑
n,(n,q)=1

|cn|2 = φ(q)
∑

n,(n,q)=1

|cn|2.

Similarly, for (b),

q∑
n=1

∣∣∣ ∑
χ (mod q)

cχχ(n)
∣∣∣2

=

q∑
n=1

( ∑
χ (mod q)

cχχ(n)
)( ∑

ψ (mod q)

cψψ(n)
)

=
∑
n

∑
χ,ψ

cχcψχ(n)ψ(n)

=
∑
n

∑
χ

cχcχχ(n)χ(n)

=
∑

n,(n,q)=1

∑
χ

|cχ|2,

where the second last line follows from the first orthogonality.

2. Note that
d(n)χ(n) =

∑
ab=n

χ(a)χ(b)
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so we will to estimate ∑
n≤x

∑
ab=n

χ(a)χ(b) =
∑
ab≤x

χ(a)χ(b).

Using Dirichlet’s hyperbola method, this equals∑
a≤
√
x

∑
b≤x/a

χ(a)χ(b) +
∑
b≤
√
x

∑
√
x<a≤x/b

χ(a)χ(b).

The magnitude of the first sum is bounded by∣∣∣ ∑
a≤
√
x

χ(a)
∑
b≤x/a

χ(b)
∣∣∣

≤
∑
a≤
√
x

|χ(a)|
∣∣∣ ∑
b≤x/a

χ(b)
∣∣∣

≤
∑
a≤
√
x

|χ(a)|O(1) (because χ is nonprincipal)

≤
√
xO(1).

Similarly, the second sum is bounded by
√
xO(1). Therefore∑

ab≤x

χ(a)χ(b) = O(
√
x).

3. (i) follows upon observing that

ζ(4)

ζ(2)
=

∏
q prime

1− q−2

1− q−4
=

∏
q prime

(1 + q−2)−1

L(2, χ) =
∏

q prime

(1−
(q
p

)
q2)−1, ζ(2) =

∏
q prime

(1− q2)−1

and that
(1 + q−2)−1 ≤ (1−

(q
p

)
q2)−1 ≤ (1− q2)−1.

(ii) Recall

L(2, χ) =
∞∑
n=1

(n
p

)n−2, ζ(2) =
∞∑
n=1

n−2.
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In order to make |L(2, χ)−ζ(2)| arbitrarily small, we must pick a prime such that (n
p
) = 1 for

all 1 ≤ n ≤ N , where N is an arbitrarily large number. By Dirichlet’s theorem, there exist
infinitely many primes p that is 1 mod 8, 1 mod p1, 1 mod p2, . . . , 1 mod pk, where {pi} is
an enumeration of odd primes in increasing order and pk is the smallest prime greater than
N . By construction (2

p
) = 1, (pi

p
) = ( p

pi
) = 1 for all i = 1, . . . , k by quadratic reciprocity, and

so (n
p
) = 1 for all 1 ≤ n ≤ N . Therefore

|L(2, χ)− ζ(2)| < 2
∑
n>N

1

n2
<

1

N
.

This solves the first part of the problem.

For the second part, we use the same idea again, but the execution is a little bit trickier.
By Exercise 4 in Problem Set 6, we have

ζ(4)

ζ(2)
=

∞∑
n=1

µ(n)

n2

∞∑
m=1

1

m4

=
∑
m,n≥2

µ(n)

(m2n)2

=
∑
m≥1

n square free

µ(n)

(m2n)2
.

Since every positive integer can be factorized uniquely into a square and a squarefree
integer, we can rewrite this so that

ζ(4)

ζ(2)
=
∞∑
n=1

ν(n)

n2

where ν(n) := µ(squarefree part of n).

We want to show that there exist infinitely many primes p such that∣∣∣L(2, χ)− ζ(4)

ζ(2)

∣∣∣ =
∣∣∣ ∞∑
n=1

(n
p

) 1

n2
−
∞∑
n=1

ν(n)

n2

∣∣∣
is small. It suffices to show that we can pick p so that (n

p
) = ν(n) for all 1 ≤ n ≤ N , where

N is arbitrarily large.

As before let {pi} be an enumeration of odd primes in increasing order, and let pk be the
smallest prime greater than N . For each 1 ≤ i ≤ k pick a nonresidue ai (mod pi). Dirichlet’s
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theorem implies that there are infinitely many primes p that is 5 mod 8 and ai mod pi for
all 1 ≤ i ≤ k. Then (2

p
) = −1, and (pi

p
) = ( p

pi
) = −1 by quadratic reciprocity. Therefore, if

1 ≤ n ≤ N and n = a2b where b is the squarefree part of n, then (n
p
) = ( b

p
) = µ(b) = ν(n),

as desired.

4. (a) By Euclidean algorithm we can write x = qK + r with 0 ≤ r < q. Now∑
n≤x,(n,q)=1

1 = Kφ(q) +O(φ(q))

=
x− r
q

φ(q) +O(φ(q))

=
φ(q)

q
x+O(φ(q)).

(b) We will show that Bc = {n : 2010 - φ(n)} has density 0. 2010 = 2 · 3 · 5 · 67, so we
can rewrite

Bc = {n : 2 - φ(n)} ∪ {n : 3 - φ(n)} ∪ {n : 5 - φ(n)} ∪ {n : 67 - φ(n)}.

Hence it suffices to prove a more general claim that {n : p - φ(n)} has density 0 for every
prime p. When p = 2, from the formula

φ(pa1
1 . . . pak

k ) = (p1 − 1)pa1−1
1 . . . (pk − 1)pak−1

k

it is clear that p - φ(n) unless n = 2. So we may assume p is odd.

{n : p - φ(n)} is contained in the set A := {n : n has no prime factor 1 mod p}. Let’s
show that A has density 0. Enumerate 1 (mod p) primes in increasing order as {pi}. Also
choose some positive integer k. Note that A ⊂ Ak := {n : n is coprime to p1, . . . , pk}. So we
have reduced the problem to showing that the density of Ak approaches zero as k →∞.

Let’s estimate the density of Ak. Pick some x > k. The number of n ≤ x such that n is
coprime with p1, . . . , pk equals∑

n≤x
(n,p1...pk)=1

1 =
(p1 − 1) . . . (pk − 1)

p1 . . . pk
x+O(φ(p1 . . . pk)),

where the estimate follows from (a). Dividing this by x, this equals

k∏
i=1

(
1− 1

pi

)
+

1

x
O(φ(p1 . . . pk)).
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Letting x→∞, this approaches
∏k

i=1(1− p
−1
i ). Hence (density of Ak) =

∏k
i=1(1− p

−1
i ).

Furthermore,
∏k

i=1(1−p
−1
i ) converges to zero as k →∞, because

∏∞
i=1(1−p

−1
i )−1 diverges

to infinity (because log
∏∞

i=1(1 − p−1
i )−1 =

∑
i− log(1 − p−1

i ) =
∑

i 1/pi+convergent, and∑
i 1/pi diverges by Dirichlet). This completes the proof.
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