MATH 152 Problem set 9 solutions

1. In both (a) and (b), we simply expand the left-hand side and use orthogonality relations. For (a),

$$
\begin{aligned}
& \quad \sum_{\chi(\bmod q)}\left|\sum_{n=1}^{q} c_{n} \chi(n)\right|^{2} \\
& =\sum_{\chi}\left(\sum_{n=1}^{q} c_{n} \chi(n)\right)\left(\sum_{m=1}^{q} \bar{c}_{m} \bar{\chi}(m)\right) \\
& =\sum_{\chi} \sum_{1 \leq n, m \leq q} c_{n} \bar{c}_{m} \chi(n) \bar{\chi}(m) \\
& =\sum_{\chi} \sum_{n} c_{n} \bar{c}_{n} \chi(n) \bar{\chi}(n)
\end{aligned}
$$

by the second orthogonality relation. Since $\chi(n) \bar{\chi}(n)=1$ if $(n, q)=1$ and 0 otherwise, this equals

$$
\sum_{\chi} \sum_{n,(n, q)=1}\left|c_{n}\right|^{2}=\phi(q) \sum_{n,(n, q)=1}\left|c_{n}\right|^{2} .
$$

Similarly, for (b),

$$
\begin{aligned}
\sum_{n=1}^{q} \mid & \left.\sum_{\chi(\bmod q)} c_{\chi} \chi(n)\right|^{2} \\
& =\sum_{n=1}^{q}\left(\sum_{\chi(\bmod q)} c_{\chi} \chi(n)\right)\left(\sum_{\psi(\bmod q)} \bar{c}_{\psi} \bar{\psi}(n)\right) \\
& =\sum_{n} \sum_{\chi, \psi} c_{\chi} \bar{c}_{\psi} \chi(n) \bar{\psi}(n) \\
& =\sum_{n} \sum_{\chi} c_{\chi} \bar{c}_{\chi} \chi(n) \bar{\chi}(n) \\
& =\sum_{n,(n, q)=1} \sum_{\chi}\left|c_{\chi}\right|^{2},
\end{aligned}
$$

where the second last line follows from the first orthogonality.
2. Note that

$$
d(n) \chi(n)=\sum_{a b=n} \chi(a) \chi(b)
$$

so we will to estimate

$$
\sum_{n \leq x} \sum_{a b=n} \chi(a) \chi(b)=\sum_{a b \leq x} \chi(a) \chi(b)
$$

Using Dirichlet's hyperbola method, this equals

$$
\sum_{a \leq \sqrt{x}} \sum_{b \leq x / a} \chi(a) \chi(b)+\sum_{b \leq \sqrt{x}} \sum_{\sqrt{x}<a \leq x / b} \chi(a) \chi(b) .
$$

The magnitude of the first sum is bounded by

$$
\begin{aligned}
& \left|\sum_{a \leq \sqrt{x}} \chi(a) \sum_{b \leq x / a} \chi(b)\right| \\
& \quad \leq \sum_{a \leq \sqrt{x}}|\chi(a)|\left|\sum_{b \leq x / a} \chi(b)\right| \\
& \leq \sum_{a \leq \sqrt{x}}|\chi(a)| O(1) \quad \text { (because } \chi \text { is nonprincipal) } \\
& \quad \leq \sqrt{x} O(1)
\end{aligned}
$$

Similarly, the second sum is bounded by $\sqrt{x} O(1)$. Therefore

$$
\sum_{a b \leq x} \chi(a) \chi(b)=O(\sqrt{x})
$$

3. (i) follows upon observing that

$$
\begin{gathered}
\frac{\zeta(4)}{\zeta(2)}=\prod_{q \text { prime }} \frac{1-q^{-2}}{1-q^{-4}}=\prod_{q \text { prime }}\left(1+q^{-2}\right)^{-1} \\
L(2, \chi)=\prod_{q \text { prime }}\left(1-\left(\frac{q}{p}\right) q^{2}\right)^{-1}, \zeta(2)=\prod_{q \text { prime }}\left(1-q^{2}\right)^{-1}
\end{gathered}
$$

and that

$$
\left(1+q^{-2}\right)^{-1} \leq\left(1-\left(\frac{q}{p}\right) q^{2}\right)^{-1} \leq\left(1-q^{2}\right)^{-1}
$$

(ii) Recall

$$
L(2, \chi)=\sum_{n=1}^{\infty}\left(\frac{n}{p}\right) n^{-2}, \zeta(2)=\sum_{n=1}^{\infty} n^{-2} .
$$

In order to make $|L(2, \chi)-\zeta(2)|$ arbitrarily small, we must pick a prime such that $\left(\frac{n}{p}\right)=1$ for all $1 \leq n \leq N$, where N is an arbitrarily large number. By Dirichlet's theorem, there exist infinitely many primes p that is $1 \bmod 8,1 \bmod p_{1}, 1 \bmod p_{2}, \ldots, 1 \bmod p_{k}$, where $\left\{p_{i}\right\}$ is an enumeration of odd primes in increasing order and p_{k} is the smallest prime greater than N. By construction $\left(\frac{2}{p}\right)=1,\left(\frac{p_{i}}{p}\right)=\left(\frac{p}{p_{i}}\right)=1$ for all $i=1, \ldots, k$ by quadratic reciprocity, and so $\left(\frac{n}{p}\right)=1$ for all $1 \leq n \leq N$. Therefore

$$
|L(2, \chi)-\zeta(2)|<2 \sum_{n>N} \frac{1}{n^{2}}<\frac{1}{N}
$$

This solves the first part of the problem.

For the second part, we use the same idea again, but the execution is a little bit trickier. By Exercise 4 in Problem Set 6, we have

$$
\begin{aligned}
\frac{\zeta(4)}{\zeta(2)} & =\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{2}} \sum_{m=1}^{\infty} \frac{1}{m^{4}} \\
& =\sum_{m, n \geq 2} \frac{\mu(n)}{\left(m^{2} n\right)^{2}} \\
& =\sum_{\substack{m \geq 1 \\
n \text { square free }}} \frac{\mu(n)}{\left(m^{2} n\right)^{2}} .
\end{aligned}
$$

Since every positive integer can be factorized uniquely into a square and a squarefree integer, we can rewrite this so that

$$
\frac{\zeta(4)}{\zeta(2)}=\sum_{n=1}^{\infty} \frac{\nu(n)}{n^{2}}
$$

where $\nu(n):=\mu($ squarefree part of $n)$.

We want to show that there exist infinitely many primes p such that

$$
\left|L(2, \chi)-\frac{\zeta(4)}{\zeta(2)}\right|=\left|\sum_{n=1}^{\infty}\left(\frac{n}{p}\right) \frac{1}{n^{2}}-\sum_{n=1}^{\infty} \frac{\nu(n)}{n^{2}}\right|
$$

is small. It suffices to show that we can pick p so that $\left(\frac{n}{p}\right)=\nu(n)$ for all $1 \leq n \leq N$, where N is arbitrarily large.

As before let $\left\{p_{i}\right\}$ be an enumeration of odd primes in increasing order, and let p_{k} be the smallest prime greater than N. For each $1 \leq i \leq k$ pick a nonresidue $a_{i}\left(\bmod p_{i}\right)$. Dirichlet's
theorem implies that there are infinitely many primes p that is $5 \bmod 8$ and $a_{i} \bmod p_{i}$ for all $1 \leq i \leq k$. Then $\left(\frac{2}{p}\right)=-1$, and $\left(\frac{p_{i}}{p}\right)=\left(\frac{p}{p_{i}}\right)=-1$ by quadratic reciprocity. Therefore, if $1 \leq n \leq N$ and $n=a^{2} b$ where b is the squarefree part of n, then $\left(\frac{n}{p}\right)=\left(\frac{b}{p}\right)=\mu(b)=\nu(n)$, as desired.
4. (a) By Euclidean algorithm we can write $x=q K+r$ with $0 \leq r<q$. Now

$$
\begin{aligned}
\sum_{n \leq x,(n, q)=1} 1 & =K \phi(q)+O(\phi(q)) \\
& =\frac{x-r}{q} \phi(q)+O(\phi(q)) \\
& =\frac{\phi(q)}{q} x+O(\phi(q))
\end{aligned}
$$

(b) We will show that $\mathcal{B}^{c}=\{n: 2010 \nmid \phi(n)\}$ has density $0.2010=2 \cdot 3 \cdot 5 \cdot 67$, so we can rewrite

$$
\mathcal{B}^{c}=\{n: 2 \nmid \phi(n)\} \cup\{n: 3 \nmid \phi(n)\} \cup\{n: 5 \nmid \phi(n)\} \cup\{n: 67 \nmid \phi(n)\} .
$$

Hence it suffices to prove a more general claim that $\{n: p \nmid \phi(n)\}$ has density 0 for every prime p. When $p=2$, from the formula

$$
\phi\left(p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}\right)=\left(p_{1}-1\right) p_{1}^{a_{1}-1} \ldots\left(p_{k}-1\right) p_{k}^{a_{k}-1}
$$

it is clear that $p \nmid \phi(n)$ unless $n=2$. So we may assume p is odd.
$\{n: p \nmid \phi(n)\}$ is contained in the set $A:=\{n: n$ has no prime factor $1 \bmod p\}$. Let's show that A has density 0 . Enumerate $1(\bmod p)$ primes in increasing order as $\left\{p_{i}\right\}$. Also choose some positive integer k. Note that $A \subset A_{k}:=\left\{n: n\right.$ is coprime to $\left.p_{1}, \ldots, p_{k}\right\}$. So we have reduced the problem to showing that the density of A_{k} approaches zero as $k \rightarrow \infty$.

Let's estimate the density of A_{k}. Pick some $x>k$. The number of $n \leq x$ such that n is coprime with p_{1}, \ldots, p_{k} equals

$$
\sum_{\substack{n \leq x \\\left(n, p_{1} \ldots p_{k}\right)=1}} 1=\frac{\left(p_{1}-1\right) \ldots\left(p_{k}-1\right)}{p_{1} \ldots p_{k}} x+O\left(\phi\left(p_{1} \ldots p_{k}\right)\right)
$$

where the estimate follows from (a). Dividing this by x, this equals

$$
\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)+\frac{1}{x} O\left(\phi\left(p_{1} \ldots p_{k}\right)\right)
$$

Letting $x \rightarrow \infty$, this approaches $\prod_{i=1}^{k}\left(1-p_{i}^{-1}\right)$. Hence (density of $\left.A_{k}\right)=\prod_{i=1}^{k}\left(1-p_{i}^{-1}\right)$.

Furthermore, $\prod_{i=1}^{k}\left(1-p_{i}^{-1}\right)$ converges to zero as $k \rightarrow \infty$, because $\prod_{i=1}^{\infty}\left(1-p_{i}^{-1}\right)^{-1}$ diverges to infinity (because $\log \prod_{i=1}^{\infty}\left(1-p_{i}^{-1}\right)^{-1}=\sum_{i}-\log \left(1-p_{i}^{-1}\right)=\sum_{i} 1 / p_{i}+$ convergent, and $\sum_{i} 1 / p_{i}$ diverges by Dirichlet). This completes the proof.

