
MATH 152 Problem set 8 solutions

1. Let an = 1 (for all n), f(n) = log n, S(n) =
∑n

k=1 ak and apply the partial summation
formula (as in the November 8th notes) to obtain

N∑
n=1

log n = N logN −
N−1∑
n=1

n
(

log(n+ 1)− log n
)
.

It remains to rewrite the sum on the right-hand side in terms of integrals. First of all,
note

log(n+ 1)− log n =

∫ n+1

n

1

t
dt,

so

n
(

log(n+ 1)− log n
)

=

∫ n+1

n

n

t
dt

=

∫ n+1

n

[t]

t
dt

=

∫ n+1

n

1 +
−{t}
t

dt

= 1−
∫ n+1

n

−{t}
t

dt.

This implies

N−1∑
n=1

n
(

log(n+ 1)− log n
)

=
N−1∑
n=1

(
1−

∫ n+1

n

{t}
t
dt
)

= N − 1−
∫ N

1

{t}
t
dt.

Plugging this result into the earlier equality above proves
∑N

n=1 log n = N logN −N + 1 +∫ N

1
{t}
t
dt.

Next let’s think about F (x) :=
∫ x

1
{t}dt. Notice that we can write

F (x) =
1

2
([x]− 1) +

1

2
{x}2
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or, equivalently

F (x) =
1

2
(x− {x} − 1) +

1

2
{x}2 =

1

2
x+

1

2
({x}2 − {x} − 1).

F (x) is an antiderivative of {x} in [1,∞) except at when x is an integer. Since we can
ignore the set of integers when doing an integral, we can apply integration by parts and write∫ N

1

{t}
t
dt =

F (N)

N
− F (1)

1
−
∫ N

1

F (t)

−t2
dt =

F (N)

N
+

∫ N

1

F (t)

t2
dt.

The first term on the right is clearly 1/2 +O(1/N). As for the integral, first notice that∫ ∞
1

{x}2 − {x} − 1

2t2
dt

is a convergent integral because the integrand is bounded by 2, and that

− 1

N
=

∫ ∞
N

−2

2t2
dt <

∫ ∞
N

{x}2 − {x} − 1

2t2
dt <

∫ ∞
N

2

2t2
dt =

1

N
.

So ∫ N

1

F (t)

t2
dt

=

∫ N

1

1

2t
dt+

∫ N

1

{x}2 − {x} − 1

2t2
dt

=
1

2
logN +

∫ ∞
1

{x}2 − {x} − 1

2t2
dt−

∫ ∞
N

{x}2 − {x} − 1

2t2
dt

=
1

2
logN +

∫ ∞
1

{x}2 − {x} − 1

2t2
dt+O(

1

N
).

Therefore ∫ N

1

{t}
t
dt =

1

2
logN + C0 +O(1/N)

where C0 = 1/2 +
∫∞

1
({x}2 − {x} − 1)/2t2dt, as desired.

Finally, combining our results so far we get

logN ! =
N∑

n=1

log n = N logN −N + 1 +
1

2
logN + C0 +O(

1

N
),
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which quickly implies
N ! = eN log Ne−N+1e

1
2

log NeC0+O( 1
N

).

By rearranging the terms a little, this becomes

NNe−N
√
NeC0+1+O( 1

N
).

Hence
N !

NNe−N
√
NeC0+1

= eO( 1
N

) −→ 1

as N →∞.

2. The “obvious estimation” of the tail
∑

n>N 1/n2: simply observe that

0 <
∑
n>N

1

n2
<

∫ ∞
N

1

x2
dx =

1

N
.

This is an estimate on
∑

n>N 1/n2 with the margin of error = RHS - LHS= 1/N .

The “refined estimation”: we can improve the lower bound in the previous one, like this:

1

N + 1
=

∫ ∞
N+1

1

x2
dx <

∞∑
n=N+1

1

n2
<

∫ ∞
N

1

x2
dx =

1

N
.

This is an estimate with the margin of error 1/N − 1/(N + 1) = 1/N(N + 1) ∼ 1/N2.

This much is all you are asked to do, but it is possible (and not hard at all) to give a
still better estimate, with the margin of error about O(1/N3). Above we approximated each

term 1/n2 by
∫ n+1

n
1/x2dt. For the better estimate, we approximate 1/n2 by

∫ n+1

n
1/x2dt +

1
2
(1/n2 − 1/(n + 1)2). (Draw the graph of y = 1/x2 and compare the area beneath the

curve with the graph of y = 1/[x]2 to understand why this has a possibility to give a better
estimate). The error of this individual term estimate equals (again, drawing the graphs will
help understand where the following integral comes from)∫ n+1

n

( 1

(n+ 1)2
− 1

n2

)
(x− n) +

1

n2
− 1

x2
dx

=
( 1

(n+ 1)2
− 1

n2

)
(
1

2
x2 − nx)− x

n2
+

1

x

∣∣∣n+1

n

=
( 1

(n+ 1)2
− 1

n2

)1

2
+

1

n2
− 1

(n+ 1)n

=
−n− 1/2

(n+ 1)2n2
+

1

n2(n+ 1)
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=
1/2

(n+ 1)2n2

= O(
1

n4
).

Hence the sum of all the individual error terms is
∑

n>N O( 1
n4 ) = O( 1

n3 ).

3. Assume s > 1. Put an = 1 and f(n) = 1/ns and apply the partial summation formula
to get

N∑
n=1

1

ns
=

N

N s
−

N∑
n=1

n
( 1

(n+ 1)s
− 1

ns

)
.

As N →∞, the left-hand side converges to ζ(s), and N/N s on the right vanishes. To rewrite
the sum on the right as an integral, we basically repeat what we did in Problem 1 above.
First of all, note

n
( 1

(n+ 1)s
− 1

ns

)
= −s

∫ n+1

n

n

ts+1
dt

= −s
∫ n+1

n

[t]

ts+1
dt

= −s
∫ n+1

n

1

ts
dt+ s

∫ n+1

n

{t}
ts+1

dt.

Hence

∞∑
n=1

n
( 1

(n+ 1)s
− 1

ns

)
= −s

∫ ∞
1

1

ts
dt+ s

∫ ∞
1

{t}
ts+1

dt =
−s
s− 1

+ s

∫ ∞
1

{t}
ts+1

dt.

Substitute this into the earlier equality to obtain the desired result.

Next let’s consider the integral
∫∞

1
{t}
ts+1dt. This is bounded from below by 0 and from

above by
∫∞

1
1

ts+1dt, which exists for all s > 0. So our integral converges for all s > 0. In
case s = 0, however, we have already shown in Problem 1 that our integral will grow like
1
2

logN . And of course, when s < 0 it can only be worse.

4. Write S(n) =
∑n

k=1 an. By assumption limn→∞ S(n)/n = 1. Partial summation with
f(n) = 1/n gives

N∑
n=1

an
1

n
= S(N)

1

N
−

N−1∑
n=1

S(n)
( 1

n+ 1
− 1

n

)
.
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Rewriting this, we have

N−1∑
n=1

S(n)
( 1

n
− 1

n+ 1

)
= −S(N)

1

N
+

N∑
n=1

an
1

n
=
O(1)

N
+

N∑
n=1

an
1

n
.

Since O(1)
N

vanishes as N tends to infinity, we only need to worry about the left-hand side.
We can rewrite it as

N−1∑
n=1

S(n)

n

1

n+ 1
.

We now use the fact that S(n)/n → 1. Fix ε > 0. Then we can pick M such that
whenever n ≥M we have |S(n)/n− 1| < ε. Hence for any N > M we have∣∣∣N−1∑

n=1

S(n)

n

1

n+ 1
−

N−1∑
n=1

1

n+ 1

∣∣∣
≤ C(M) +

∣∣∣ N−1∑
n=M

S(n)

n

1

n+ 1
−

N−1∑
n=M

1

n+ 1

∣∣∣
≤ C(M) +

N−1∑
n=M

ε

n+ 1

≤ C(M) + ε logN.

where C(M) = |
∑M−1

n=1
S(n)

n
1

n+1
−
∑M−1

n=1
1

n+1
|. Divide both sides by logN to get

∣∣∣ 1

logN

N−1∑
n=1

S(n)

n

1

n+ 1
− 1

logN

N−1∑
n=1

1

n+ 1

∣∣∣ < C(M)/ logN + ε.

Here, as N → ∞, the right-hand side goes to ε, and 1
log N

∑N−1
n=1

1
n+1

approaches 1. Since ε

is arbitrarily small, we conclude that 1
log N

∑N−1
n=1

S(n)
n

1
n+1

approaches 1, too. Recalling the
equality from the partial summation formula above, this immediately gives

lim
N→∞

1

logN

N∑
n=1

an
1

n
= 1

as desired.

The converse is false. For a counterexample, consider a sequence {an} defined by an = 2k

if n = 2k, and an = 1 otherwise. Then

1

logN

N∑
n=1

an

n
=

1

logN

∑
n≤N,n6=2k

1

n
+

1

logN

∑
n≤N,n=2k

1.
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When N is large, the first sum here is about 1
log N

∑
n≤N

1
n
, because 1

log N

∑
n≤N,n=2k

1
n
<

1
log N
· 2→ 0 as N →∞. And the second sum equals 1

log N
[ log N

log 2
], which converges to log 2 as

N →∞. Hence

lim
N→∞

1

logN

N∑
n=1

an

n
= 1 + log 2.

But then consider

1

N

N∑
n=1

an =
1

N

∑
n≤N,n6=2k

1 +
1

N

∑
n≤N,n=2k

n.

Again, when N is large, the first sum here is very close to 1
N

∑
n≤N 1 = 1. But the second

sum here oscillates. When N = 2k, it equals 2k+1−1
2k , which is about 2. But when N = 2k−1,

it’s 2k−1
2k , about 1. So the sum oscillates between 1 and 2. That is, the limit doesn’t even exist.

5. Let N > 2 be an integer. Set an = 1 and f(n) = 1/ log n and do partial summation
from 2 to N :

N∑
n=2

1

log n
=

N

logN
− 1

log 2
−

N−1∑
n=2

n
( 1

log(n+ 1)
− 1

log n

)
.

Two lemmas are in order. First is that

N

logN
− 2

log 2
=

∫ N

2

( t

log t

)′
dt

=

∫ N

2

1

log t
dt−

∫ N

2

1

(log t)2
dt

and the second is

−
N−1∑
n=2

n
( 1

log(n+ 1)
− 1

log n

)
= −

N−1∑
n=2

n

∫ n+1

n

( 1

log t

)′
dt

=
N−1∑
n=2

n

∫ n+1

n

1

t(log t)2
dt

=

∫ N

2

[t]

t(log t)2
dt

=

∫ N

2

1

(log t)2
dt−

∫ N

2

{t}
t(log t)2

dt.
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Consequently, we have

N∑
n=2

1

log n
=

∫ N

2

1

log t
dt+

1

log 2
−
∫ N

2

{t}
t(log t)2

dt.

Let’s show that ∫ N

2

{t}
t(log t)2

dt = O(
1

logN
) + C0

for some constant C0. Note that ∫ ∞
2

{t}
t(log t)2

dt

is convergent because the integrand is bounded by 1/t(log t)2 and
∫∞

2
1/t(log t)2dt = 1/ log 2

is convergent. Hence we can write∫ N

2

{t}
t(log t)2

dt =

∫ ∞
2

{t}
t(log t)2

dt−
∫ ∞

N

{t}
t(log t)2

dt.

But the last term on the right is O(1/ logN) because it is bounded by
∫∞

N
1/t(log t)2dt =

1/ logN . Therefore we have shown that

N∑
n=2

1

log n
=

∫ N

2

1

log t
dt+ C +O(

1

logN
)

for some constant C.

In general, for a real number x > 2, we have

∑
2≤n≤x

1

log n
=

∫ [x]

2

1

log t
dt+ C +O(

1

log[x]
)

=

∫ x

2

1

log t
dt−

∫ x

[x]

1

log t
dt+ C +O(

1

log[x]
)

=

∫ x

2

1

log t
dt+ C +O(

1

log x
)

as desired.
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