MATH 152 Problem set 8 solutions

1. Let $a_{n}=1$ (for all n), $f(n)=\log n, S(n)=\sum_{k=1}^{n} a_{k}$ and apply the partial summation formula (as in the November 8th notes) to obtain

$$
\sum_{n=1}^{N} \log n=N \log N-\sum_{n=1}^{N-1} n(\log (n+1)-\log n)
$$

It remains to rewrite the sum on the right-hand side in terms of integrals. First of all, note

$$
\log (n+1)-\log n=\int_{n}^{n+1} \frac{1}{t} d t
$$

so

$$
\begin{aligned}
n(\log (n+1)-\log n) & =\int_{n}^{n+1} \frac{n}{t} d t \\
& =\int_{n}^{n+1} \frac{[t]}{t} d t \\
& =\int_{n}^{n+1} 1+\frac{-\{t\}}{t} d t \\
& =1-\int_{n}^{n+1} \frac{-\{t\}}{t} d t
\end{aligned}
$$

This implies

$$
\sum_{n=1}^{N-1} n(\log (n+1)-\log n)=\sum_{n=1}^{N-1}\left(1-\int_{n}^{n+1} \frac{\{t\}}{t} d t\right)=N-1-\int_{1}^{N} \frac{\{t\}}{t} d t
$$

Plugging this result into the earlier equality above proves $\sum_{n=1}^{N} \log n=N \log N-N+1+$ $\int_{1}^{N} \frac{\{t\}}{t} d t$.

Next let's think about $F(x):=\int_{1}^{x}\{t\} d t$. Notice that we can write

$$
F(x)=\frac{1}{2}([x]-1)+\frac{1}{2}\{x\}^{2}
$$

or, equivalently

$$
F(x)=\frac{1}{2}(x-\{x\}-1)+\frac{1}{2}\{x\}^{2}=\frac{1}{2} x+\frac{1}{2}\left(\{x\}^{2}-\{x\}-1\right) .
$$

$F(x)$ is an antiderivative of $\{x\}$ in $[1, \infty)$ except at when x is an integer. Since we can ignore the set of integers when doing an integral, we can apply integration by parts and write

$$
\int_{1}^{N} \frac{\{t\}}{t} d t=\frac{F(N)}{N}-\frac{F(1)}{1}-\int_{1}^{N} \frac{F(t)}{-t^{2}} d t=\frac{F(N)}{N}+\int_{1}^{N} \frac{F(t)}{t^{2}} d t
$$

The first term on the right is clearly $1 / 2+O(1 / N)$. As for the integral, first notice that

$$
\int_{1}^{\infty} \frac{\{x\}^{2}-\{x\}-1}{2 t^{2}} d t
$$

is a convergent integral because the integrand is bounded by 2 , and that

$$
-\frac{1}{N}=\int_{N}^{\infty} \frac{-2}{2 t^{2}} d t<\int_{N}^{\infty} \frac{\{x\}^{2}-\{x\}-1}{2 t^{2}} d t<\int_{N}^{\infty} \frac{2}{2 t^{2}} d t=\frac{1}{N}
$$

So

$$
\begin{aligned}
\int_{1}^{N} & \frac{F(t)}{t^{2}} d t \\
& =\int_{1}^{N} \frac{1}{2 t} d t+\int_{1}^{N} \frac{\{x\}^{2}-\{x\}-1}{2 t^{2}} d t \\
& =\frac{1}{2} \log N+\int_{1}^{\infty} \frac{\{x\}^{2}-\{x\}-1}{2 t^{2}} d t-\int_{N}^{\infty} \frac{\{x\}^{2}-\{x\}-1}{2 t^{2}} d t \\
& =\frac{1}{2} \log N+\int_{1}^{\infty} \frac{\{x\}^{2}-\{x\}-1}{2 t^{2}} d t+O\left(\frac{1}{N}\right) .
\end{aligned}
$$

Therefore

$$
\int_{1}^{N} \frac{\{t\}}{t} d t=\frac{1}{2} \log N+C_{0}+O(1 / N)
$$

where $C_{0}=1 / 2+\int_{1}^{\infty}\left(\{x\}^{2}-\{x\}-1\right) / 2 t^{2} d t$, as desired.

Finally, combining our results so far we get

$$
\log N!=\sum_{n=1}^{N} \log n=N \log N-N+1+\frac{1}{2} \log N+C_{0}+O\left(\frac{1}{N}\right)
$$

which quickly implies

$$
N!=e^{N \log N} e^{-N+1} e^{\frac{1}{2} \log N} e^{C_{0}+O\left(\frac{1}{N}\right)} .
$$

By rearranging the terms a little, this becomes

$$
N^{N} e^{-N} \sqrt{N} e^{C_{0}+1+O\left(\frac{1}{N}\right)}
$$

Hence

$$
\frac{N!}{N^{N} e^{-N} \sqrt{N} e^{C_{0}+1}}=e^{O\left(\frac{1}{N}\right)} \longrightarrow 1
$$

as $N \rightarrow \infty$.
2. The "obvious estimation" of the tail $\sum_{n>N} 1 / n^{2}$: simply observe that

$$
0<\sum_{n>N} \frac{1}{n^{2}}<\int_{N}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{N} .
$$

This is an estimate on $\sum_{n>N} 1 / n^{2}$ with the margin of error $=$ RHS - LHS $=1 / N$.
The "refined estimation": we can improve the lower bound in the previous one, like this:

$$
\frac{1}{N+1}=\int_{N+1}^{\infty} \frac{1}{x^{2}} d x<\sum_{n=N+1}^{\infty} \frac{1}{n^{2}}<\int_{N}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{N}
$$

This is an estimate with the margin of error $1 / N-1 /(N+1)=1 / N(N+1) \sim 1 / N^{2}$.

This much is all you are asked to do, but it is possible (and not hard at all) to give a still better estimate, with the margin of error about $O\left(1 / N^{3}\right)$. Above we approximated each term $1 / n^{2}$ by $\int_{n}^{n+1} 1 / x^{2} d t$. For the better estimate, we approximate $1 / n^{2}$ by $\int_{n}^{n+1} 1 / x^{2} d t+$ $\frac{1}{2}\left(1 / n^{2}-1 /(n+1)^{2}\right)$. (Draw the graph of $y=1 / x^{2}$ and compare the area beneath the curve with the graph of $y=1 /[x]^{2}$ to understand why this has a possibility to give a better estimate). The error of this individual term estimate equals (again, drawing the graphs will help understand where the following integral comes from)

$$
\begin{aligned}
& \int_{n}^{n+1}\left(\frac{1}{(n+1)^{2}}-\frac{1}{n^{2}}\right)(x-n)+\frac{1}{n^{2}}-\frac{1}{x^{2}} d x \\
& \quad=\left(\frac{1}{(n+1)^{2}}-\frac{1}{n^{2}}\right)\left(\frac{1}{2} x^{2}-n x\right)-\frac{x}{n^{2}}+\left.\frac{1}{x}\right|_{n} ^{n+1} \\
& \quad=\left(\frac{1}{(n+1)^{2}}-\frac{1}{n^{2}}\right) \frac{1}{2}+\frac{1}{n^{2}}-\frac{1}{(n+1) n} \\
& \quad=\frac{-n-1 / 2}{(n+1)^{2} n^{2}}+\frac{1}{n^{2}(n+1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1 / 2}{(n+1)^{2} n^{2}} \\
& =O\left(\frac{1}{n^{4}}\right)
\end{aligned}
$$

Hence the sum of all the individual error terms is $\sum_{n>N} O\left(\frac{1}{n^{4}}\right)=O\left(\frac{1}{n^{3}}\right)$.
3. Assume $s>1$. Put $a_{n}=1$ and $f(n)=1 / n^{s}$ and apply the partial summation formula to get

$$
\sum_{n=1}^{N} \frac{1}{n^{s}}=\frac{N}{N^{s}}-\sum_{n=1}^{N} n\left(\frac{1}{(n+1)^{s}}-\frac{1}{n^{s}}\right)
$$

As $N \rightarrow \infty$, the left-hand side converges to $\zeta(s)$, and N / N^{s} on the right vanishes. To rewrite the sum on the right as an integral, we basically repeat what we did in Problem 1 above. First of all, note

$$
\begin{aligned}
n\left(\frac{1}{(n+1)^{s}}-\frac{1}{n^{s}}\right) & =-s \int_{n}^{n+1} \frac{n}{t^{s+1}} d t \\
& =-s \int_{n}^{n+1} \frac{[t]}{t^{s+1}} d t \\
& =-s \int_{n}^{n+1} \frac{1}{t^{s}} d t+s \int_{n}^{n+1} \frac{\{t\}}{t^{s+1}} d t
\end{aligned}
$$

Hence

$$
\sum_{n=1}^{\infty} n\left(\frac{1}{(n+1)^{s}}-\frac{1}{n^{s}}\right)=-s \int_{1}^{\infty} \frac{1}{t^{s}} d t+s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} d t=\frac{-s}{s-1}+s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} d t
$$

Substitute this into the earlier equality to obtain the desired result.
Next let's consider the integral $\int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} d t$. This is bounded from below by 0 and from above by $\int_{1}^{\infty} \frac{1}{t^{s+1}} d t$, which exists for all $s>0$. So our integral converges for all $s>0$. In case $s=0$, however, we have already shown in Problem 1 that our integral will grow like $\frac{1}{2} \log N$. And of course, when $s<0$ it can only be worse.
4. Write $S(n)=\sum_{k=1}^{n} a_{n}$. By assumption $\lim _{n \rightarrow \infty} S(n) / n=1$. Partial summation with $f(n)=1 / n$ gives

$$
\sum_{n=1}^{N} a_{n} \frac{1}{n}=S(N) \frac{1}{N}-\sum_{n=1}^{N-1} S(n)\left(\frac{1}{n+1}-\frac{1}{n}\right)
$$

Rewriting this, we have

$$
\sum_{n=1}^{N-1} S(n)\left(\frac{1}{n}-\frac{1}{n+1}\right)=-S(N) \frac{1}{N}+\sum_{n=1}^{N} a_{n} \frac{1}{n}=\frac{O(1)}{N}+\sum_{n=1}^{N} a_{n} \frac{1}{n}
$$

Since $\frac{O(1)}{N}$ vanishes as N tends to infinity, we only need to worry about the left-hand side. We can rewrite it as

$$
\sum_{n=1}^{N-1} \frac{S(n)}{n} \frac{1}{n+1}
$$

We now use the fact that $S(n) / n \rightarrow 1$. Fix $\varepsilon>0$. Then we can pick M such that whenever $n \geq M$ we have $|S(n) / n-1|<\varepsilon$. Hence for any $N>M$ we have

$$
\begin{aligned}
& \left|\sum_{n=1}^{N-1} \frac{S(n)}{n} \frac{1}{n+1}-\sum_{n=1}^{N-1} \frac{1}{n+1}\right| \\
& \quad \leq C(M)+\left|\sum_{n=M}^{N-1} \frac{S(n)}{n} \frac{1}{n+1}-\sum_{n=M}^{N-1} \frac{1}{n+1}\right| \\
& \quad \leq C(M)+\sum_{n=M}^{N-1} \frac{\varepsilon}{n+1} \\
& \quad \leq C(M)+\varepsilon \log N .
\end{aligned}
$$

where $C(M)=\left|\sum_{n=1}^{M-1} \frac{S(n)}{n} \frac{1}{n+1}-\sum_{n=1}^{M-1} \frac{1}{n+1}\right|$. Divide both sides by $\log N$ to get

$$
\left|\frac{1}{\log N} \sum_{n=1}^{N-1} \frac{S(n)}{n} \frac{1}{n+1}-\frac{1}{\log N} \sum_{n=1}^{N-1} \frac{1}{n+1}\right|<C(M) / \log N+\varepsilon
$$

Here, as $N \rightarrow \infty$, the right-hand side goes to ε, and $\frac{1}{\log N} \sum_{n=1}^{N-1} \frac{1}{n+1}$ approaches 1 . Since ε is arbitrarily small, we conclude that $\frac{1}{\log N} \sum_{n=1}^{N-1} \frac{S(n)}{n} \frac{1}{n+1}$ approaches 1 , too. Recalling the equality from the partial summation formula above, this immediately gives

$$
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^{N} a_{n} \frac{1}{n}=1
$$

as desired.

The converse is false. For a counterexample, consider a sequence $\left\{a_{n}\right\}$ defined by $a_{n}=2^{k}$ if $n=2^{k}$, and $a_{n}=1$ otherwise. Then

$$
\frac{1}{\log N} \sum_{n=1}^{N} \frac{a_{n}}{n}=\frac{1}{\log N} \sum_{n \leq N, n \neq 2^{k}} \frac{1}{n}+\frac{1}{\log N} \sum_{n \leq N, n=2^{k}} 1
$$

When N is large, the first sum here is about $\frac{1}{\log N} \sum_{n \leq N} \frac{1}{n}$, because $\frac{1}{\log N} \sum_{n \leq N, n=2^{k}} \frac{1}{n}<$ $\frac{1}{\log N} \cdot 2 \rightarrow 0$ as $N \rightarrow \infty$. And the second sum equals $\frac{1}{\log N}\left[\frac{\log N}{\log 2}\right]$, which converges to $\log 2$ as $N \rightarrow \infty$. Hence

$$
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{a_{n}}{n}=1+\log 2
$$

But then consider

$$
\frac{1}{N} \sum_{n=1}^{N} a_{n}=\frac{1}{N} \sum_{n \leq N, n \neq 2^{k}} 1+\frac{1}{N} \sum_{n \leq N, n=2^{k}} n
$$

Again, when N is large, the first sum here is very close to $\frac{1}{N} \sum_{n \leq N} 1=1$. But the second sum here oscillates. When $N=2^{k}$, it equals $\frac{2^{k+1}-1}{2^{k}}$, which is about 2 . But when $N=2^{k}-1$, it's $\frac{2^{k}-1}{2^{k}}$, about 1 . So the sum oscillates between 1 and 2 . That is, the limit doesn't even exist.
5. Let $N>2$ be an integer. Set $a_{n}=1$ and $f(n)=1 / \log n$ and do partial summation from 2 to N :

$$
\sum_{n=2}^{N} \frac{1}{\log n}=\frac{N}{\log N}-\frac{1}{\log 2}-\sum_{n=2}^{N-1} n\left(\frac{1}{\log (n+1)}-\frac{1}{\log n}\right)
$$

Two lemmas are in order. First is that

$$
\begin{aligned}
\frac{N}{\log N}-\frac{2}{\log 2} & =\int_{2}^{N}\left(\frac{t}{\log t}\right)^{\prime} d t \\
& =\int_{2}^{N} \frac{1}{\log t} d t-\int_{2}^{N} \frac{1}{(\log t)^{2}} d t
\end{aligned}
$$

and the second is

$$
\begin{aligned}
-\sum_{n=2}^{N-1} n\left(\frac{1}{\log (n+1)}-\frac{1}{\log n}\right) & =-\sum_{n=2}^{N-1} n \int_{n}^{n+1}\left(\frac{1}{\log t}\right)^{\prime} d t \\
& =\sum_{n=2}^{N-1} n \int_{n}^{n+1} \frac{1}{t(\log t)^{2}} d t \\
& =\int_{2}^{N} \frac{[t]}{t(\log t)^{2}} d t \\
& =\int_{2}^{N} \frac{1}{(\log t)^{2}} d t-\int_{2}^{N} \frac{\{t\}}{t(\log t)^{2}} d t
\end{aligned}
$$

Consequently, we have

$$
\sum_{n=2}^{N} \frac{1}{\log n}=\int_{2}^{N} \frac{1}{\log t} d t+\frac{1}{\log 2}-\int_{2}^{N} \frac{\{t\}}{t(\log t)^{2}} d t
$$

Let's show that

$$
\int_{2}^{N} \frac{\{t\}}{t(\log t)^{2}} d t=O\left(\frac{1}{\log N}\right)+C_{0}
$$

for some constant C_{0}. Note that

$$
\int_{2}^{\infty} \frac{\{t\}}{t(\log t)^{2}} d t
$$

is convergent because the integrand is bounded by $1 / t(\log t)^{2}$ and $\int_{2}^{\infty} 1 / t(\log t)^{2} d t=1 / \log 2$ is convergent. Hence we can write

$$
\int_{2}^{N} \frac{\{t\}}{t(\log t)^{2}} d t=\int_{2}^{\infty} \frac{\{t\}}{t(\log t)^{2}} d t-\int_{N}^{\infty} \frac{\{t\}}{t(\log t)^{2}} d t
$$

But the last term on the right is $O(1 / \log N)$ because it is bounded by $\int_{N}^{\infty} 1 / t(\log t)^{2} d t=$ $1 / \log N$. Therefore we have shown that

$$
\sum_{n=2}^{N} \frac{1}{\log n}=\int_{2}^{N} \frac{1}{\log t} d t+C+O\left(\frac{1}{\log N}\right)
$$

for some constant C.

In general, for a real number $x>2$, we have

$$
\begin{aligned}
\sum_{2 \leq n \leq x} \frac{1}{\log n} & =\int_{2}^{[x]} \frac{1}{\log t} d t+C+O\left(\frac{1}{\log [x]}\right) \\
& =\int_{2}^{x} \frac{1}{\log t} d t-\int_{[x]}^{x} \frac{1}{\log t} d t+C+O\left(\frac{1}{\log [x]}\right) \\
& =\int_{2}^{x} \frac{1}{\log t} d t+C+O\left(\frac{1}{\log x}\right)
\end{aligned}
$$

as desired.

