MATH 152 Problem set 7 solutions

1. First recall that

$$
L\left(1, \chi_{8}\right)=\sum_{n=1}^{\infty} \chi_{8}(n) n^{-1}=1-\frac{1}{3}-\frac{1}{5}+\frac{1}{7}+\ldots
$$

To compute this, we can use the same technique as in the notes on the Dirichlet's theorem used to evalute $L\left(1, \chi_{4}\right)$.

$$
L\left(1, \chi_{8}\right)=\int_{0}^{1} 1-x^{2}-x^{4}+x^{6}+x^{8}-x^{10} \ldots d x
$$

The integrand is a geometric series with the initial term $1-x^{2}$ and the common ratio $-x^{4}$. Hence all we need is compute the integral

$$
\int_{0}^{1} \frac{1-x^{2}}{1+x^{4}} d x
$$

To do this, ${ }^{1}$ we rewrite this as

$$
\int_{0}^{1} \frac{1-x^{2}}{\left(1+\sqrt{2} x+x^{2}\right)\left(1-\sqrt{2} x+x^{2}\right)} d x=\int_{0}^{1} \frac{A_{1}(x)}{1+\sqrt{2} x+x^{2}}+\frac{A_{2}(x)}{1-\sqrt{2} x+x^{2}} d x
$$

where we can compute and find out that $A_{1}(x)=\frac{1}{2 \sqrt{2}}(2 x+\sqrt{2})$ and $A_{2}(x)=\frac{1}{2 \sqrt{2}}(-2 x+\sqrt{2})$. Therefore, our integral equals

$$
\begin{aligned}
& \frac{1}{2 \sqrt{2}} \int_{0}^{1} \frac{2 x+\sqrt{2}}{x^{2}+\sqrt{2} x+1}-\frac{2 x-\sqrt{2}}{x^{2}-\sqrt{2} x+1} d x \\
& \quad=\frac{1}{2 \sqrt{2}}\left[\log \left(x^{2}+\sqrt{2} x+1\right)-\log \left(x^{2}-\sqrt{2} x+1\right)\right]_{0}^{1} \\
& \quad=\frac{1}{2 \sqrt{2}}(\log (2+\sqrt{2})-\log (2-\sqrt{2})) \\
& \quad=\frac{1}{2 \sqrt{2}} \log 3+2 \sqrt{2}
\end{aligned}
$$

[^0]Others values are done in a similar way:

$$
L\left(1, \chi_{-8}\right)=1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\ldots=\int_{0}^{1} 1+x^{2}-x^{4}-x^{6}+x^{8}+x^{10}-\ldots d x
$$

equals

$$
\int_{0}^{1} \frac{1+x^{2}}{1+x^{4}} d x=\frac{1}{\sqrt{2}}[\arctan (1+\sqrt{2} x)-\arctan (1-\sqrt{2} x)]_{0}^{1}=\frac{1}{\sqrt{2}}(\arctan (1+\sqrt{2})-\arctan (1-\sqrt{2}))
$$

(See footnote 1 on how to compute this integral.) In fact, we can simplify this expression further, because $-\arctan (1-\sqrt{2})=\arctan (\sqrt{2}-1)(\operatorname{as} \arctan (x)$ is an odd function), and furthermore, if $\theta=\arctan (1+\sqrt{2})$ then $\pi / 2-\theta=\arctan \left(\frac{1}{1+\sqrt{2}}\right)=\arctan (\sqrt{2}-1)$. So this actually equals $\pi / 2 \sqrt{2}$.

And
$L\left(1, \chi_{5}\right)=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\ldots=\int_{0}^{1} 1-x-x^{2}+x^{3}+x^{5}-x^{6}-x^{7}+x^{8}+\ldots d x$ equals

$$
\begin{aligned}
& \int_{0}^{1} \frac{1-x-x^{2}+x^{3}}{1-x^{5}} d x \\
& \quad=\frac{1}{\sqrt{5}}\left[\log \left(2 x^{2}+(\sqrt{5}+1) x+2\right)-\log \left(2 x^{2}-(\sqrt{5}-1) x+2\right)\right]_{0}^{1} \\
& \quad=\frac{1}{\sqrt{5}}(\log (5+\sqrt{5})-\log (5-\sqrt{5})) \\
& \quad=\frac{1}{\sqrt{5}} \log \frac{3+\sqrt{5}}{2}
\end{aligned}
$$

2. Suppose ψ is an additive character $(\bmod q)$. Then $\psi(0)=\psi(0+0)=\psi(0) \psi(0)$, so $\psi(0)=0$ or 1 . In fact, $\psi(0)=1$, because otherwise $\psi(n)=\psi(n+0)=\psi(n) \psi(0)=0$ for all n, contradicting that $\psi(n)$ is not all zero. By periodicity, $\psi(q)=\psi(0)=1$.

Furthermore, $\psi(1)$ completely determines the function ψ, since $\psi(n)=\psi(1+\ldots+1)=$ $(\psi(1))^{n}$ for all n. And by the earlier remark, $\psi(q)=(\psi(1))^{q}=1$, i.e. $\psi(1)$ is a q-th root of unity. This allows us to write

$$
\psi(1)=e^{\frac{2 \pi i}{q} a}
$$

for some integer a, and

$$
\psi(n)=e^{\frac{2 \pi i}{q} a n}
$$

It is easy to see that $e^{\frac{2 \pi i}{q} a n}$ is indeed an additive character $(\bmod q)$, and that we have just proved that any additive character $(\bmod q)$ must be of this form. Also note that two characters $e^{\frac{2 \pi i}{q} a n}$ and $e^{\frac{2 \pi i}{q} b n}$ are the same if and only if $a \equiv b(\bmod q)$. Therefore, the set of all additive characters $(\bmod q)$ is precisely $\left\{e^{\frac{2 \pi i}{q} a n}: 0 \leq a \leq q-1\right\}$.

The first orthogonality relation is:

$$
\sum_{n=0}^{q-1} e^{\frac{2 \pi i}{q} a n} \overline{e^{\frac{2 \pi i}{q} b n}}=\sum_{n=0}^{q-1} e^{\frac{2 \pi i}{q}(a-b) n}= \begin{cases}q & \text { if } a \equiv b(\bmod q) \\ 0 & \text { otherwise }\end{cases}
$$

The second orthogonality relation is:

$$
\sum_{a=0}^{q-1} e^{\frac{2 \pi i}{q} a n} \overline{e^{\frac{2 \pi i}{q} a m}}=\sum_{a=0}^{q-1} e^{\frac{2 \pi i}{q} a(n-m)}= \begin{cases}q & \text { if } n \equiv m(\bmod q) \\ 0 & \text { otherwise }\end{cases}
$$

To prove these orthogonality relations, recall that

$$
f(x):=x^{q-1}+x^{q-2}+\ldots+x+1= \begin{cases}q & \text { if } x=1 \\ 0 & \text { if } x \text { is any other } q \text {-th root of unity }\end{cases}
$$

because the roots of $(x-1) f(x)=x^{q}-1$ are precisely the q-th roots of unity, and $(x-1)$ accounts for the root $x=1$, so $f(x)$ accounts for every other root of $x^{q}-1$. Now, the expression in the first orthogonality is $f\left(e^{\frac{2 \pi i}{q}(a-b)}\right)$, and in the second orthogonality is $f\left(e^{\frac{2 \pi i}{q}(n-m)}\right)$, which are equal to q if $a-b \equiv 0$ and $n-m \equiv 0(\bmod q)$ respectively, and zero otherwise. This completes the proof.
3. Let integers a and q be given. Our work in the previous exercise tells us that

$$
\frac{1}{q} \sum_{k=0}^{q-1} e^{\frac{2 \pi i}{q}(-a) k} e^{\frac{2 \pi i}{q} n k}= \begin{cases}1 & \text { if } n \equiv a(\bmod q) \\ 0 & \text { if } n \not \equiv a(\bmod q)\end{cases}
$$

Therefore

$$
\begin{aligned}
& \sum_{n=1,}^{\infty} a(n) a(\bmod q) \\
= & \sum_{n=1}^{\infty} a(n)\left(\frac{1}{q} \sum_{k=0}^{q-1} e^{\frac{2 \pi i}{q}(-a) k} e^{\frac{2 \pi i}{q} n k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{q} \sum_{k=0}^{q-1} e^{\frac{2 \pi i}{q}(-a) k} \sum_{n=1}^{\infty} a(n) e^{\frac{2 \pi i}{q} n k} \\
& =\frac{1}{q} \sum_{n=1}^{\infty} a(n)+\frac{1}{q} \sum_{k=1}^{q-1} e^{\frac{2 \pi i}{q}(-a) k} \sum_{n=1}^{\infty} a(n) e^{\frac{2 \pi i}{q} n k} .
\end{aligned}
$$

The first sum diverges by assumption, and the second sum looks like it would converge because formally it is a linear combination of $\lim _{r \rightarrow 1^{-}} f\left(r e^{\frac{2 \pi i}{q} k}\right)$, where $k=1,2, \ldots, q-1$, which is finite by assumption. But strange as it may sound, there is no guarantee that $\lim _{r \rightarrow 1^{-}} f\left(r e^{\frac{2 \pi i}{q} k}\right)=f\left(e^{\frac{2 \pi i}{q} k}\right)=\sum_{n=1}^{\infty} a(n) e^{\frac{2 \pi i}{q} n k}$. ${ }^{2}$ So we have to be a little bit more careful.

Rewrite

$$
\begin{equation*}
\sum_{n=1, n \equiv a(\bmod q)}^{\infty} a(n)=\sum_{n=1}^{\infty} a(n) \lim _{r \rightarrow 1^{-}}\left(\frac{1}{q} \sum_{k=0}^{q-1}(r e)^{\frac{2 \pi i}{q}(-a) k}(r e)^{\frac{2 \pi i}{q} n k}\right) . \tag{1}
\end{equation*}
$$

Since

$$
a(n)\left(\frac{1}{q} \sum_{k=0}^{q-1}(r e)^{\frac{2 \pi i}{q}(-a) k}(r e)^{\frac{2 \pi i}{q} n k}\right) \longrightarrow a(n)\left(\frac{1}{q} \sum_{k=0}^{q-1} e^{\frac{2 \pi i}{q}(-a) k} e^{\frac{2 \pi i}{q} n k}\right)
$$

uniformly as $r \rightarrow 1^{-}$, we can rewrite (1) as

$$
\lim _{r \rightarrow 1^{-}} \sum_{n=1}^{\infty} a(n)\left(\frac{1}{q} \sum_{k=0}^{q-1}(r e)^{\frac{2 \pi i}{q}(-a) k}(r e)^{\frac{2 \pi i}{q} n k}\right)
$$

which is equal to

$$
\lim _{r \rightarrow 1^{-}}\left(\frac{1}{q} \sum_{n=1}^{\infty} a(n)+\frac{1}{q} \sum_{k=1}^{q-1}(r e)^{\frac{2 \pi i}{q}(-a) k} \sum_{n=1}^{\infty} a(n)(r e)^{\frac{2 \pi i}{q} n k}\right) .
$$

Here the first sum diverges, and the second sum converges by the assumptions.
4. Suppose χ has order l. Then $(\chi(n))^{l}=\left(\chi_{0}(n)\right)^{l}=1$ for all n with $(n, p)=1$, i.e. $\chi(n)$ is an l-th root of unity.

Next, suppose g is a primitive root $(\bmod p)$. We need to show that the order of $\chi(g)$ is l. Certainly $(\chi(g))^{l}=1$. If there exists $k<l$ such that $(\chi(g))^{k}=1$, then $\left(\chi\left(g^{i}\right)\right)^{k}=1$ for all integers $i ; g$ being a primitive root, this means that $(\chi(n))^{k}=1$ for all n such that

[^1]$(n, p)=1$, which in turn means that χ has order at most k, contradicting the assumption that χ has order $l>k$.

As for the last question of the problem, the answer is no. Here is a counterexample; let $\chi(n)=(n \mid 7)$ be a character mod 7. χ has order 2 . And $\chi(6)=-1$ is a primitive 2 nd root of unity. But 6 is not a primitive root $(\bmod 7)$.
5. Let g be a primitive root $(\bmod p)$. By the multiplicativity of a character $\chi(\bmod p)$, χ is entirely determined by $\chi(g)$. Furthermore, χ is real if and only if $\chi(g)$ is real. Therefore $\chi(g)=1$ or -1 , and consequently there are precisely two real characters $(\bmod p)$.

In the $\bmod p^{\alpha}$ case, we know that there exists a primitive root $g\left(\bmod p^{\alpha}\right)$. Again a character $\chi\left(\bmod p^{\alpha}\right)$ is entirely determined by $\chi(g)$, and χ is real if and only if $\chi(g)$ is. Therefore there are two real characters, one with $\chi(g)=1$ and the other with $\chi(g)=-1$.

Mod 2^{α} case: if $\alpha=1$, there is only a single character $(\bmod 2)$, namely the principal character, which happens to be real. If $\alpha \geq 2$, recall from Problem Set 3, Exercise 5 that the reduced residue class mod 2^{α} (i.e. $\left.\left(\mathbb{Z} / 2^{\alpha} \mathbb{Z}\right)^{*}\right)$ is generated by -1 and 5 . So any $\chi(\bmod$ 2^{α}) is determined by $\chi(-1)$ and $\chi(5)$, and if in addition χ is real, these can only map to ± 1. Hence there are 4 real characters $\left(\bmod 2^{\alpha}\right)$.

In general, if $q=p_{0}^{\alpha_{0}} p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$, (here $p_{0}=2, p_{i}$ for $i \geq 1$ are distinct odd primes and $\left.\alpha_{i} \geq 1\right)$, then a character $(\bmod q)$ is a multiple of characters $\left(\bmod p_{i}^{\alpha_{i}}\right), i=0,1, \ldots, k$. And two characters $(\bmod q)$ are the same if and only if they are multiples of the same characters $\left(\bmod p_{i}^{\alpha_{i}}\right)$ for all i. Therefore, if $\alpha_{0} \geq 2$ then there are 2^{k+2} real characters $(\bmod q)$, and if $\alpha_{0}=0,1$ then there are 2^{k} real characters $(\bmod q)$.

[^0]: ${ }^{1}$ Fortunately for us, every integral of the form $\int \frac{f(x)}{g(x)} d x$, where $f(x), g(x)$ are polynomials with real coefficients, can be done by a routine method. The strategy is to factorize $g(x)=g_{1}(x) g_{2}(x) \ldots g_{k}(x)$ where $g_{i}(x)$ are linear or quadratic polynomials with real coefficients, and write $\frac{f(x)}{g(x)}=\frac{A_{1}(x)}{g_{1}(x)}+\ldots+\frac{A_{k}(x)}{g_{k}(x)}$ for some appropriate polynomials $A_{i}(x)$'s. Next, divide $A_{i}(x)$ by $g_{i}(x)$ so that we will have $\frac{f(x)}{g(x)}=p(x)+\frac{B_{1}(x)}{g_{1}(x)}+$ $\ldots+\frac{B_{k}(x)}{g_{k}(x)}$ for some polynomials $p(x)$ and $B_{i}(x)$ with $\operatorname{deg} B_{i}<\operatorname{deg} g_{i}$.

 Now, if $\operatorname{deg} g_{i}=1$, then $\int \frac{B_{i}(x)}{g_{i}(x)} d x$ is a \log of something. If $\operatorname{deg} g_{i}=2$ and $\operatorname{deg} B_{i}=0$, then $\int \frac{B_{i}(x)}{g_{i}(x)} d x$ is a arctan of something. If $\operatorname{deg} g_{i}=2$ and $\operatorname{deg} B_{i}=1$, then the integral is a sum of \log (something) and \arctan (something).

[^1]: ${ }^{2}$ A theorem of Abel says that if the right-hand side converges then this equality is true; but in our situation we do not know yet if it converges.

