
MATH 152 Problem set 7 solutions

1. First recall that

L(1, χ8) =
∞∑
n=1

χ8(n)n−1 = 1− 1

3
− 1

5
+

1

7
+ . . . .

To compute this, we can use the same technique as in the notes on the Dirichlet’s theorem
used to evalute L(1, χ4).

L(1, χ8) =

∫ 1

0

1− x2 − x4 + x6 + x8 − x10 . . . dx.

The integrand is a geometric series with the initial term 1 − x2 and the common ratio
−x4. Hence all we need is compute the integral∫ 1

0

1− x2

1 + x4
dx.

To do this,1 we rewrite this as∫ 1

0

1− x2

(1 +
√

2x+ x2)(1−
√

2x+ x2)
dx =

∫ 1

0

A1(x)

1 +
√

2x+ x2
+

A2(x)

1−
√

2x+ x2
dx,

where we can compute and find out that A1(x) = 1
2
√

2
(2x+

√
2) and A2(x) = 1

2
√

2
(−2x+

√
2).

Therefore, our integral equals

1

2
√

2

∫ 1

0

2x+
√

2

x2 +
√

2x+ 1
− 2x−

√
2

x2 −
√

2x+ 1
dx

=
1

2
√

2

[
log(x2 +

√
2x+ 1)− log(x2 −

√
2x+ 1)

]1
0

=
1

2
√

2

(
log(2 +

√
2)− log(2−

√
2)
)

=
1

2
√

2
log 3 + 2

√
2.

1Fortunately for us, every integral of the form
∫ f(x)

g(x)dx, where f(x), g(x) are polynomials with real
coefficients, can be done by a routine method. The strategy is to factorize g(x) = g1(x)g2(x) . . . gk(x) where
gi(x) are linear or quadratic polynomials with real coefficients, and write f(x)

g(x) = A1(x)
g1(x) + . . .+ Ak(x)

gk(x) for some

appropriate polynomials Ai(x)’s. Next, divide Ai(x) by gi(x) so that we will have f(x)
g(x) = p(x) + B1(x)

g1(x) +

. . . + Bk(x)
gk(x) for some polynomials p(x) and Bi(x) with deg Bi < deg gi.

Now, if deg gi = 1, then
∫ Bi(x)

gi(x) dx is a log of something. If deg gi = 2 and deg Bi = 0, then
∫ Bi(x)

gi(x) dx

is a arctan of something. If deg gi = 2 and deg Bi = 1, then the integral is a sum of log(something) and
arctan(something).
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Others values are done in a similar way:

L(1, χ−8) = 1 +
1

3
− 1

5
− 1

7
+ . . . =

∫ 1

0

1 + x2 − x4 − x6 + x8 + x10 − . . . dx

equals∫ 1

0

1 + x2

1 + x4
dx =

1√
2

[
arctan(1+

√
2x)−arctan(1−

√
2x)
]1

0
=

1√
2

(
arctan(1+

√
2)−arctan(1−

√
2)
)
.

(See footnote 1 on how to compute this integral.) In fact, we can simplify this expression
further, because − arctan(1−

√
2) = arctan(

√
2− 1) (as arctan(x) is an odd function), and

furthermore, if θ = arctan(1 +
√

2) then π/2− θ = arctan( 1
1+
√

2
) = arctan(

√
2− 1). So this

actually equals π/2
√

2.

And

L(1, χ5) = 1− 1

2
− 1

3
+

1

4
+

1

6
− 1

7
− 1

8
+

1

9
+ . . . =

∫ 1

0

1−x−x2 +x3 +x5−x6−x7 +x8 + . . . dx

equals ∫ 1

0

1− x− x2 + x3

1− x5
dx

=
1√
5

[
log(2x2 + (

√
5 + 1)x+ 2)− log(2x2 − (

√
5− 1)x+ 2)

]1
0

=
1√
5

(
log(5 +

√
5)− log(5−

√
5)
)

=
1√
5

log
3 +
√

5

2
.

2. Suppose ψ is an additive character (mod q). Then ψ(0) = ψ(0 + 0) = ψ(0)ψ(0), so
ψ(0) = 0 or 1. In fact, ψ(0) = 1, because otherwise ψ(n) = ψ(n+ 0) = ψ(n)ψ(0) = 0 for all
n, contradicting that ψ(n) is not all zero. By periodicity, ψ(q) = ψ(0) = 1.

Furthermore, ψ(1) completely determines the function ψ, since ψ(n) = ψ(1 + . . .+ 1) =
(ψ(1))n for all n. And by the earlier remark, ψ(q) = (ψ(1))q = 1, i.e. ψ(1) is a q-th root of
unity. This allows us to write

ψ(1) = e
2πi
q
a

for some integer a, and

ψ(n) = e
2πi
q
an.
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It is easy to see that e
2πi
q
an is indeed an additive character (mod q), and that we have

just proved that any additive character (mod q) must be of this form. Also note that two

characters e
2πi
q
an and e

2πi
q
bn are the same if and only if a ≡ b (mod q). Therefore, the set of

all additive characters (mod q) is precisely {e
2πi
q
an : 0 ≤ a ≤ q − 1}.

The first orthogonality relation is:

q−1∑
n=0

e
2πi
q
ane

2πi
q
bn =

q−1∑
n=0

e
2πi
q

(a−b)n =

{
q if a ≡ b (mod q)
0 otherwise.

The second orthogonality relation is:

q−1∑
a=0

e
2πi
q
ane

2πi
q
am =

q−1∑
a=0

e
2πi
q
a(n−m) =

{
q if n ≡ m (mod q)
0 otherwise.

To prove these orthogonality relations, recall that

f(x) := xq−1 + xq−2 + . . .+ x+ 1 =

{
q if x = 1
0 if x is any other q-th root of unity

because the roots of (x − 1)f(x) = xq − 1 are precisely the q-th roots of unity, and (x − 1)
accounts for the root x = 1, so f(x) accounts for every other root of xq−1. Now, the expres-

sion in the first orthogonality is f(e
2πi
q

(a−b)), and in the second orthogonality is f(e
2πi
q

(n−m)),
which are equal to q if a − b ≡ 0 and n −m ≡ 0 (mod q) respectively, and zero otherwise.
This completes the proof.

3. Let integers a and q be given. Our work in the previous exercise tells us that

1

q

q−1∑
k=0

e
2πi
q

(−a)ke
2πi
q
nk =

{
1 if n ≡ a (mod q)
0 if n 6≡ a (mod q).

Therefore

∞∑
n=1, n≡a (mod q)

a(n)

=
∞∑
n=1

a(n)
(1

q

q−1∑
k=0

e
2πi
q

(−a)ke
2πi
q
nk
)
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=
1

q

q−1∑
k=0

e
2πi
q

(−a)k
∞∑
n=1

a(n)e
2πi
q
nk

=
1

q

∞∑
n=1

a(n) +
1

q

q−1∑
k=1

e
2πi
q

(−a)k
∞∑
n=1

a(n)e
2πi
q
nk.

The first sum diverges by assumption, and the second sum looks like it would converge

because formally it is a linear combination of limr→1− f(re
2πi
q
k), where k = 1, 2, . . . , q − 1,

which is finite by assumption. But strange as it may sound, there is no guarantee that

limr→1− f(re
2πi
q
k) = f(e

2πi
q
k) =

∑∞
n=1 a(n)e

2πi
q
nk.2 So we have to be a little bit more careful.

Rewrite

∞∑
n=1, n≡a (mod q)

a(n) =
∞∑
n=1

a(n) lim
r→1−

(1

q

q−1∑
k=0

(re)
2πi
q

(−a)k(re)
2πi
q
nk
)
. (1)

Since

a(n)
(1

q

q−1∑
k=0

(re)
2πi
q

(−a)k(re)
2πi
q
nk
)
−→ a(n)

(1

q

q−1∑
k=0

e
2πi
q

(−a)ke
2πi
q
nk
)

uniformly as r → 1−, we can rewrite (1) as

lim
r→1−

∞∑
n=1

a(n)
(1

q

q−1∑
k=0

(re)
2πi
q

(−a)k(re)
2πi
q
nk
)
,

which is equal to

lim
r→1−

(1

q

∞∑
n=1

a(n) +
1

q

q−1∑
k=1

(re)
2πi
q

(−a)k
∞∑
n=1

a(n)(re)
2πi
q
nk
)
.

Here the first sum diverges, and the second sum converges by the assumptions.

4. Suppose χ has order l. Then (χ(n))l = (χ0(n))l = 1 for all n with (n, p) = 1, i.e. χ(n)
is an l-th root of unity.

Next, suppose g is a primitive root (mod p). We need to show that the order of χ(g)
is l. Certainly (χ(g))l = 1. If there exists k < l such that (χ(g))k = 1, then (χ(gi))k = 1
for all integers i; g being a primitive root, this means that (χ(n))k = 1 for all n such that

2A theorem of Abel says that if the right-hand side converges then this equality is true; but in our
situation we do not know yet if it converges.

4



(n, p) = 1, which in turn means that χ has order at most k, contradicting the assumption
that χ has order l > k.

As for the last question of the problem, the answer is no. Here is a counterexample; let
χ(n) = (n|7) be a character mod 7. χ has order 2. And χ(6) = −1 is a primitive 2nd root
of unity. But 6 is not a primitive root (mod 7).

5. Let g be a primitive root (mod p). By the multiplicativity of a character χ (mod p),
χ is entirely determined by χ(g). Furthermore, χ is real if and only if χ(g) is real. Therefore
χ(g) = 1 or −1, and consequently there are precisely two real characters (mod p).

In the mod pα case, we know that there exists a primitive root g (mod pα). Again a
character χ (mod pα) is entirely determined by χ(g), and χ is real if and only if χ(g) is.
Therefore there are two real characters, one with χ(g) = 1 and the other with χ(g) = −1.

Mod 2α case: if α = 1, there is only a single character (mod 2), namely the principal
character, which happens to be real. If α ≥ 2, recall from Problem Set 3, Exercise 5 that
the reduced residue class mod 2α (i.e. (Z/2αZ)∗) is generated by −1 and 5. So any χ (mod
2α) is determined by χ(−1) and χ(5), and if in addition χ is real, these can only map to ±1.
Hence there are 4 real characters (mod 2α).

In general, if q = pα0
0 p

α1
1 . . . pαkk , (here p0 = 2, pi for i ≥ 1 are distinct odd primes and

αi ≥ 1), then a character (mod q) is a multiple of characters (mod pαii ), i = 0, 1, . . . , k. And
two characters (mod q) are the same if and only if they are multiples of the same characters
(mod pαii ) for all i. Therefore, if α0 ≥ 2 then there are 2k+2 real characters (mod q), and if
α0 = 0, 1 then there are 2k real characters (mod q).
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