MATH 152 Problem set 7 solutions

1. First recall that

$$L(1,\chi_8) = \sum_{n=1}^{\infty} \chi_8(n) n^{-1} = 1 - \frac{1}{3} - \frac{1}{5} + \frac{1}{7} + \dots$$

To compute this, we can use the same technique as in the notes on the Dirichlet's theorem used to evalute $L(1, \chi_4)$.

$$L(1,\chi_8) = \int_0^1 1 - x^2 - x^4 + x^6 + x^8 - x^{10} \dots dx.$$

The integrand is a geometric series with the initial term $1 - x^2$ and the common ratio $-x^4$. Hence all we need is compute the integral

$$\int_{0}^{1} \frac{1 - x^2}{1 + x^4} dx$$

To do this,¹ we rewrite this as

$$\int_0^1 \frac{1-x^2}{(1+\sqrt{2}x+x^2)(1-\sqrt{2}x+x^2)} dx = \int_0^1 \frac{A_1(x)}{1+\sqrt{2}x+x^2} + \frac{A_2(x)}{1-\sqrt{2}x+x^2} dx,$$

where we can compute and find out that $A_1(x) = \frac{1}{2\sqrt{2}}(2x+\sqrt{2})$ and $A_2(x) = \frac{1}{2\sqrt{2}}(-2x+\sqrt{2})$. Therefore, our integral equals

$$\frac{1}{2\sqrt{2}} \int_0^1 \frac{2x + \sqrt{2}}{x^2 + \sqrt{2}x + 1} - \frac{2x - \sqrt{2}}{x^2 - \sqrt{2}x + 1} dx$$

= $\frac{1}{2\sqrt{2}} \Big[\log(x^2 + \sqrt{2}x + 1) - \log(x^2 - \sqrt{2}x + 1) \Big]_0^1$
= $\frac{1}{2\sqrt{2}} \Big(\log(2 + \sqrt{2}) - \log(2 - \sqrt{2}) \Big)$
= $\frac{1}{2\sqrt{2}} \log 3 + 2\sqrt{2}.$

¹Fortunately for us, every integral of the form $\int \frac{f(x)}{g(x)} dx$, where f(x), g(x) are polynomials with real coefficients, can be done by a routine method. The strategy is to factorize $g(x) = g_1(x)g_2(x) \dots g_k(x)$ where $g_i(x)$ are linear or quadratic polynomials with real coefficients, and write $\frac{f(x)}{g(x)} = \frac{A_1(x)}{g_1(x)} + \dots + \frac{A_k(x)}{g_k(x)}$ for some appropriate polynomials $A_i(x)$'s. Next, divide $A_i(x)$ by $g_i(x)$ so that we will have $\frac{f(x)}{g(x)} = p(x) + \frac{B_1(x)}{g_1(x)} + \dots + \frac{B_k(x)}{g_k(x)}$ for some polynomials p(x) and $B_i(x)$ with deg $B_i < \deg g_i$.

Now, if deg $g_i = 1$, then $\int \frac{B_i(x)}{g_i(x)} dx$ is a log of something. If deg $g_i = 2$ and deg $B_i = 0$, then $\int \frac{B_i(x)}{g_i(x)} dx$ is a arctan of something. If deg $g_i = 2$ and deg $B_i = 1$, then the integral is a sum of log(something) and arctan(something).

Others values are done in a similar way:

$$L(1,\chi_{-8}) = 1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \dots = \int_0^1 1 + x^2 - x^4 - x^6 + x^8 + x^{10} - \dots dx$$

equals

$$\int_0^1 \frac{1+x^2}{1+x^4} dx = \frac{1}{\sqrt{2}} \Big[\arctan(1+\sqrt{2}x) - \arctan(1-\sqrt{2}x) \Big]_0^1 = \frac{1}{\sqrt{2}} \Big(\arctan(1+\sqrt{2}) - \arctan(1-\sqrt{2}x) \Big).$$

(See footnote 1 on how to compute this integral.) In fact, we can simplify this expression further, because $-\arctan(1-\sqrt{2}) = \arctan(\sqrt{2}-1)$ (as $\arctan(x)$ is an odd function), and furthermore, if $\theta = \arctan(1+\sqrt{2})$ then $\pi/2 - \theta = \arctan(\frac{1}{1+\sqrt{2}}) = \arctan(\sqrt{2}-1)$. So this actually equals $\pi/2\sqrt{2}$.

And

$$L(1,\chi_5) = 1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{6} - \frac{1}{7} - \frac{1}{8} + \frac{1}{9} + \dots = \int_0^1 1 - x - x^2 + x^3 + x^5 - x^6 - x^7 + x^8 + \dots dx$$

equals

$$\int_{0}^{1} \frac{1 - x - x^{2} + x^{3}}{1 - x^{5}} dx$$

$$= \frac{1}{\sqrt{5}} \Big[\log(2x^{2} + (\sqrt{5} + 1)x + 2) - \log(2x^{2} - (\sqrt{5} - 1)x + 2) \Big]_{0}^{1}$$

$$= \frac{1}{\sqrt{5}} \Big(\log(5 + \sqrt{5}) - \log(5 - \sqrt{5}) \Big)$$

$$= \frac{1}{\sqrt{5}} \log \frac{3 + \sqrt{5}}{2}.$$

2. Suppose ψ is an additive character (mod q). Then $\psi(0) = \psi(0+0) = \psi(0)\psi(0)$, so $\psi(0) = 0$ or 1. In fact, $\psi(0) = 1$, because otherwise $\psi(n) = \psi(n+0) = \psi(n)\psi(0) = 0$ for all n, contradicting that $\psi(n)$ is not all zero. By periodicity, $\psi(q) = \psi(0) = 1$.

Furthermore, $\psi(1)$ completely determines the function ψ , since $\psi(n) = \psi(1 + \ldots + 1) = (\psi(1))^n$ for all n. And by the earlier remark, $\psi(q) = (\psi(1))^q = 1$, i.e. $\psi(1)$ is a q-th root of unity. This allows us to write

$$\psi(1) = e^{\frac{2\pi i}{q}a}$$

for some integer a, and

$$\psi(n) = e^{\frac{2\pi i}{q}an}.$$

It is easy to see that $e^{\frac{2\pi i}{q}an}$ is indeed an additive character (mod q), and that we have just proved that any additive character (mod q) must be of this form. Also note that two characters $e^{\frac{2\pi i}{q}an}$ and $e^{\frac{2\pi i}{q}bn}$ are the same if and only if $a \equiv b \pmod{q}$. Therefore, the set of all additive characters (mod q) is precisely $\{e^{\frac{2\pi i}{q}an} : 0 \le a \le q-1\}$.

The first orthogonality relation is:

$$\sum_{n=0}^{q-1} e^{\frac{2\pi i}{q}an} \overline{e^{\frac{2\pi i}{q}bn}} = \sum_{n=0}^{q-1} e^{\frac{2\pi i}{q}(a-b)n} = \begin{cases} q & \text{if } a \equiv b \pmod{q} \\ 0 & \text{otherwise.} \end{cases}$$

The second orthogonality relation is:

$$\sum_{a=0}^{q-1} e^{\frac{2\pi i}{q}an} \overline{e^{\frac{2\pi i}{q}am}} = \sum_{a=0}^{q-1} e^{\frac{2\pi i}{q}a(n-m)} = \begin{cases} q & \text{if } n \equiv m \pmod{q} \\ 0 & \text{otherwise.} \end{cases}$$

To prove these orthogonality relations, recall that

$$f(x) := x^{q-1} + x^{q-2} + \ldots + x + 1 = \begin{cases} q & \text{if } x = 1\\ 0 & \text{if } x \text{ is any other } q\text{-th root of unity} \end{cases}$$

because the roots of $(x-1)f(x) = x^q - 1$ are precisely the q-th roots of unity, and (x-1) accounts for the root x = 1, so f(x) accounts for every other root of $x^q - 1$. Now, the expression in the first orthogonality is $f(e^{\frac{2\pi i}{q}(a-b)})$, and in the second orthogonality is $f(e^{\frac{2\pi i}{q}(n-m)})$, which are equal to q if $a - b \equiv 0$ and $n - m \equiv 0 \pmod{q}$ respectively, and zero otherwise. This completes the proof.

3. Let integers a and q be given. Our work in the previous exercise tells us that

$$\frac{1}{q}\sum_{k=0}^{q-1}e^{\frac{2\pi i}{q}(-a)k}e^{\frac{2\pi i}{q}nk} = \begin{cases} 1 & \text{if } n \equiv a \pmod{q} \\ 0 & \text{if } n \not\equiv a \pmod{q}. \end{cases}$$

Therefore

$$\sum_{n=1, n\equiv a \pmod{q}}^{\infty} a(n)$$
$$= \sum_{n=1}^{\infty} a(n) \left(\frac{1}{q} \sum_{k=0}^{q-1} e^{\frac{2\pi i}{q}(-a)k} e^{\frac{2\pi i}{q}nk}\right)$$

$$= \frac{1}{q} \sum_{k=0}^{q-1} e^{\frac{2\pi i}{q}(-a)k} \sum_{n=1}^{\infty} a(n) e^{\frac{2\pi i}{q}nk}$$
$$= \frac{1}{q} \sum_{n=1}^{\infty} a(n) + \frac{1}{q} \sum_{k=1}^{q-1} e^{\frac{2\pi i}{q}(-a)k} \sum_{n=1}^{\infty} a(n) e^{\frac{2\pi i}{q}nk}.$$

The first sum diverges by assumption, and the second sum looks like it would converge because formally it is a linear combination of $\lim_{r\to 1^-} f(re^{\frac{2\pi i}{q}k})$, where $k = 1, 2, \ldots, q-1$, which is finite by assumption. But strange as it may sound, there is no guarantee that $\lim_{r\to 1^-} f(re^{\frac{2\pi i}{q}k}) = f(e^{\frac{2\pi i}{q}k}) = \sum_{n=1}^{\infty} a(n)e^{\frac{2\pi i}{q}nk}$.² So we have to be a little bit more careful.

Rewrite

$$\sum_{n=1, n \equiv a \pmod{q}}^{\infty} a(n) = \sum_{n=1}^{\infty} a(n) \lim_{r \to 1^{-}} \left(\frac{1}{q} \sum_{k=0}^{q-1} (re)^{\frac{2\pi i}{q}(-a)k} (re)^{\frac{2\pi i}{q}nk} \right).$$
(1)

Since

$$a(n)\left(\frac{1}{q}\sum_{k=0}^{q-1} (re)^{\frac{2\pi i}{q}(-a)k} (re)^{\frac{2\pi i}{q}nk}\right) \longrightarrow a(n)\left(\frac{1}{q}\sum_{k=0}^{q-1} e^{\frac{2\pi i}{q}(-a)k} e^{\frac{2\pi i}{q}nk}\right)$$

uniformly as $r \to 1^-$, we can rewrite (1) as

$$\lim_{r \to 1^{-}} \sum_{n=1}^{\infty} a(n) \left(\frac{1}{q} \sum_{k=0}^{q-1} (re)^{\frac{2\pi i}{q}(-a)k} (re)^{\frac{2\pi i}{q}nk} \right),$$

which is equal to

$$\lim_{r \to 1^{-}} \Big(\frac{1}{q} \sum_{n=1}^{\infty} a(n) + \frac{1}{q} \sum_{k=1}^{q-1} (re)^{\frac{2\pi i}{q}(-a)k} \sum_{n=1}^{\infty} a(n)(re)^{\frac{2\pi i}{q}nk} \Big).$$

Here the first sum diverges, and the second sum converges by the assumptions.

4. Suppose χ has order l. Then $(\chi(n))^l = (\chi_0(n))^l = 1$ for all n with (n, p) = 1, i.e. $\chi(n)$ is an l-th root of unity.

Next, suppose g is a primitive root (mod p). We need to show that the order of $\chi(g)$ is l. Certainly $(\chi(g))^l = 1$. If there exists k < l such that $(\chi(g))^k = 1$, then $(\chi(g^i))^k = 1$ for all integers i; g being a primitive root, this means that $(\chi(n))^k = 1$ for all n such that

 $^{^{2}}$ A theorem of Abel says that if the right-hand side converges then this equality is true; but in our situation we do not know yet if it converges.

(n, p) = 1, which in turn means that χ has order at most k, contradicting the assumption that χ has order l > k.

As for the last question of the problem, the answer is no. Here is a counterexample; let $\chi(n) = (n|7)$ be a character mod 7. χ has order 2. And $\chi(6) = -1$ is a primitive 2nd root of unity. But 6 is not a primitive root (mod 7).

5. Let g be a primitive root (mod p). By the multiplicativity of a character $\chi \pmod{p}$, χ is entirely determined by $\chi(g)$. Furthermore, χ is real if and only if $\chi(g)$ is real. Therefore $\chi(g) = 1$ or -1, and consequently there are precisely two real characters (mod p).

In the mod p^{α} case, we know that there exists a primitive root $g \pmod{p^{\alpha}}$. Again a character $\chi \pmod{p^{\alpha}}$ is entirely determined by $\chi(g)$, and χ is real if and only if $\chi(g)$ is. Therefore there are two real characters, one with $\chi(g) = 1$ and the other with $\chi(g) = -1$.

Mod 2^{α} case: if $\alpha = 1$, there is only a single character (mod 2), namely the principal character, which happens to be real. If $\alpha \geq 2$, recall from Problem Set 3, Exercise 5 that the reduced residue class mod 2^{α} (i.e. $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^*$) is generated by -1 and 5. So any χ (mod 2^{α}) is determined by $\chi(-1)$ and $\chi(5)$, and if in addition χ is real, these can only map to ± 1 . Hence there are 4 real characters (mod 2^{α}).

In general, if $q = p_0^{\alpha_0} p_1^{\alpha_1} \dots p_k^{\alpha_k}$, (here $p_0 = 2$, p_i for $i \ge 1$ are distinct odd primes and $\alpha_i \ge 1$), then a character (mod q) is a multiple of characters (mod $p_i^{\alpha_i}$), $i = 0, 1, \dots, k$. And two characters (mod q) are the same if and only if they are multiples of the same characters (mod $p_i^{\alpha_i}$) for all i. Therefore, if $\alpha_0 \ge 2$ then there are 2^{k+2} real characters (mod q), and if $\alpha_0 = 0, 1$ then there are 2^k real characters (mod q).