MATH 152 Problem set 6 solutions

1. Z|\/—-2] is a Fuclidean domain (i.e. has a division algorithm): the idea is to approxi-
mate the quotient by an element in Z[/—2]. More precisely, let a+by/—2, c+dv/—2 € Z[/—2]
(of course a,b,c,d € Z). Then there exists e + f1/—2, where e, f € Q, such that

a+b\/—_2_
m—e—i-f\/—_Z.

Now pick r,s € Z such that |e —r| < 1/2 and |f — s| < 1/2. Then

a+bv2

= (c+dvV-2)(e+ fV=-2)

= (c+dV=2)(r+svV=2+(e—r)+(f —s)V-2)

= (c+dV=2)(r+sV=2)+ (c+dV=2)((e =)+ (f — 5)V=2).

We are done if we find a norm N such that N(c+dv/—2) > N((c+dv=2)((e—7r)+(f —
s)v/—2)). Define our N to be just the standard norm, i.e. N(z +yv/—2) = 2% + 2y>. (This
is just the complex Euclidean norm squared.) Then since |e —r| < 1/2 and |f — s| < 1/2,
N((e —71)+ (f —s)vV=2) < (1/2)% +2(1/2)? = 3/4. This immediately implies the desired
inequality.

Primes in Z[\/=2] are precisely the irreducibles: suppose first z € Z[/—2] is prime, and
suppose vw = z. Then either v or w is a multiple of 2z, so without loss of generality write
w = uz. Then vuz = z, and thus vu = 1; in particular v is a unit, showing that z is
irreducible.

Conversely, suppose p is irreducible, and that p | ab. By assumption, the only divisor of
p (i.e. an element n such that p = nm for some m) up to unit is p itself. Therefore (a,p) =1
or p, and similarly (b,p) = 1 or p. If either (a,p) = p or (b, p) = p, then p is prime as desired.
If (a,p) = (b,p) = 1, then we can write a = Ap+ 1 and b = Bp + 1 for some A and B,
which implies ab = (Ap + 1)(Bp + 1) = ABp? + (A + B)p + 1; but this is not a multiple
of p, a contradiction. Therefore we have shown that in Z[y/—2| primes are irreducibles and
irreducibles are primes.

Unique factorization: we first show the existence of the factorization. Pick any z €
Z]\/—2]. We argue by induction on N(z). If N(z) = 1, then z is a unit, and there is
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nothing to prove. Next assume that every element of Z[v/—2] with norm less than n has a
factorization into irreducibles, and suppose that N(z) = n. If z is irreducible, we are done.
If not, we can write z = 2129, where N(z1), N(z2) < N(z). By induction hypothesis, z; and
25 have a factorization into irreducibles, so z has one, too.

To show the uniqueness of the factorization, suppose p1...p, = q1 ... qn, where p;’s and
g;’s are irreducibles (hence primes by our work above), is two unique factorizations of the
same element. Since p; is prime, at least one ¢; is divisible by p;, and by reordering the
subscripts if necessary, we can assume j = 1. But then ¢y, being irreducible, is only divisible
by a unit or ¢ itself; and since p; divides ¢; and is not a unit, p; and ¢; are equal up to
multiplication by a unit (which, in this case, is just £1). So we can cancel out p; and ¢; from
each side and obtain ps...p, = +¢2...¢,. Repeating the same argument with p, and ¢
(with some reordering of subscripts), p3 and g3, and so on, we will have n = m and p;, = +¢;
for every 7. This proves the unique factorization.

Prime(=irreducible) elements of Z[\/—2]: let a + b\/—2 € Z[y/—2] be a prime. Note
that (a + byv/—2)(a — by/—2)Z is divisible by a + by/=2. On the other hand, we can write
(a + byv/—2)(a — by/—2) = p1 ... px, where p;’s are primes in integers. Therefore p; . ..pj is
divisible by a 4+ bv/—2, and by primality one of p; := p is divisible by a + bv/—2. Hence we

can write
p=(a+bv/=2)(c+dv=2).

By applying the norm to both sides, we get p> = N(a + bv/—2)N(c + dv/—2). Therefore
N(a + by/—2) = p or p*. In the former case, p = a® + 2b?, so it is of the form z? + 2y%. In
the latter case, we have N(c+ dv/—2) = 1, so a + by/—2 = £p, and p is not of the form
22 + 2y2; otherwise it is factorizable into (z + yv/—2)(z — yv/—2).

In summary, if a + by/—2 is prime in Z[v/—2], then either it has norm p where p is of the
form 22 4 2y2, or it has norm p? and equals p where p is not of the form z2 4 2.

Conversely, if a + by/—2 has norm p prime (in integers), then it is necessarily prime, and
p is of the form x? + 2y%. And if p (prime in integers) is not of form 22 + 22, then p is a
prime in Z[v/—2]; because otherwise p = (a + by/—2)(a — by/—2) for some a,b € Z, and so
p = a® + 2b%, a contradiction.

Therefore we have the following characterization of primes in Z[v/—2]:

1. elements with norm p, where p is an integer prime of the form z? 4 2.

2. integer primes not of the form z? + 212



2. 2 =0+2-12%is of the form 2% + 2y%. So let’s consider odd primes only. A square
of an integer is always 1 or 4 (mod 8). Hence x? + 2y* can only equal 1, 3, 4, 6 (mod 8).
Therefore primes 5 or 7 (mod 8) are not of form z? + 2y2.

Next we show that primes 1 or 3 (mod 8) are of the form z? + 2y>.

Lemma. p=1 or 3 (mod 8) if and only if n> +2 =0 (mod p) for some integer n.

Proof. The latter statement holds if and only if —2 is a quadratic residue over p, i.e. (_72) =1.

And (_72) = (_71)(%) is easily seen to be 1 if and only if p is 1 or 3 (mod 8). O

By the lemma, if p = 1 or 3 (mod 8), then we can find n such that p | n? +2 = (n +
vV—2)(n—+/—2). We want to show that p is reducible, so that p = (a+bv/—=2)(a —by/—2) =
a® + 2b% for some a,b € Z. If p is irreducible, then p divides n + /—2 or n — v/—2, and
since p divides the complex conjugate of what it divides, it actually divides both n + v/—2
and n — v/—2, and hence divides their differences, 2¢/—2. But this is impossible because
N(p) < 9 by assumption and N(2v/—2) = 8. Therefore we proved that an integer prime p
is of the form 2 + 2y if and only if p is congruent to 1 or 3 mod 8.

In general, n € Z is of the form 2? + 2y? if and only if the unique factorization of n in
Z[v/—2] has no odd power of a prime 5 or 7 mod 8. To prove the “if” part, note that in
this case we can write n = ¢2... (a + by/—2)(a — by/—2) for some a, b, c € Z. For the “only
if” part, suppose the unique factorization of n = 2 + 2y? has an odd power of a prime ¢
congruent to 5 or 7 (mod 8). By dividing both sides by the maximal possible even power of
q, assume that ¢ is the maximal power of ¢ dividing n. Then we have x* + 2y* = 0 (mod q),
z,y # 0 (mod ¢), which gives (z/y)> = —2 (mod q), that is, —2 is a quadratic residue mod
q. But this contradicts the lemma above.

3. Infinitude of 1 mod 3 primes. Suppose pi, ..., p, are all the 1 mod 3 primes there are,
and consider the expression

(2p1 - pr)® +3. (1)

This is divisible only by odd 2 mod 3 primes. Hence (1) equals

Q---q (2)

where ¢;’s are odd 2 mod 3 primes. Comparing residues mod 3 of (1) and (2) gives [ is even.
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The key lemma is that all the ¢;’s are 1 mod 4. If any ¢; := ¢ is 3 mod 4, then (%) =1,

because by quadratic reciprocity (2)(%) = —land (f) = (3) = —1. Now observe that

(2p1...pk)> +3 = 0 (mod ¢). 3 is a quadratic residue (mod q), so this is a sum of two
squares. We can lift this equality in Z, so that 22 + y? = cq for some z,y,c € Z and ¢ < q.
But this contradicts the two squares theorem.

Hence all the ¢;’s are 1 mod 4, and so (2) is 1 mod 4. But (1) is 3 mod 4, a contradiction.
This proves that there are infinitely many primes 1 mod 3.

infinitude of 2 mod 3 primes Now suppose qi, ..., q; are all the 2 mod 3 primes. Con-
sider the quantity (q; ...qx)*+ 1. By assumption this is not divisible by any 2 mod 3 primes.
But then this is congruent to 2 mod 3, so some 2 mod 3 prime must divide it, a contradiction.

4. When s > 1, the series > 7, pu(n)n~* is bounded by > °°  n~*, a convergent series.
Therefore our series also converges when s > 1.

Note that formally, > 7%, y(n)n™* equals 1/¢(s) = [[,(1 — p~). Since both of these
converge when s > 1, they must equal. In addition, ((s)/¢(2s) = [[,(1 —=p~)/(1 —p~°) =

[L(+p™%) = u(n)?/n®.

y 5. (i) Suppose m and n are coprime. A multiple of a divisor of m and a divisor of n is
always a divisor of mn, so d(mn) > d(m)d(n). Conversely, suppose x is a divisor of mn, and
let x = p{*...pi* be the prime factorization of = with p;’s all distinct. Since m and n are
coprime, each pj* divides precisely one of either m or n. Collecting the factors that divide
only m and the factors that divide only n, we see that = is a multiple of a divisor of m and
a divisor of n. This implies d(mn) < d(n)d(m). Therefore d(mn) = d(m)d(n).

d(p®) = a + 1 for any prime power p*: this is easy because p® has divisors precisely
a

17p’p27"'7p °

(ii) If n = [, pj*, then we have d(n)/n® = [[,(a; + 1)/p}*. The key observation is that
(a; + 1)/pf* is bounded by 1 for all but finitely many pairs of a; € N and p; prime; this
is because for all p; sufficiently large (e.g. p§ > 10000), (a; + 1)/p;*© < 1 for all a;; if p; is
not large enough, then for all sufficiently large a;, (a; + 1)/p{*® < 1, because this quantity
approaches zero as a; — 0o. Therefore for any n, we have

d(n) a; +1
' ] =i
ne — H i€ 7

b;

where the product is taken over all the pairs (a;,p;) for which (a; + 1)/pi*© > 1 (we just
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showed that the number of such pairs is finite).

(iii) If s < 1 then ) d(n)/n® is bounded below by > 1/n®, which diverges. If s > 1, then
by the previous exercise, for any € < s — 1 we have Y d(n)/n®>_ C(e)n‘*, which converges
because € — s < —1. Therefore ) d(n)/n® converges precisely when s > 1.

Next, in the range of convergence, note that we can write

DR | (RS

ps p25

which equals

Using the Taylor expansion

(e =1+2z+32%.. (2| <),

we see that this equals

1 2
gm = (C(s))"



