## MATH 152 Problem set 6 solutions

1. $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain (i.e. has a division algorithm): the idea is to approximate the quotient by an element in $\mathbb{Z}[\sqrt{-2}]$. More precisely, let $a+b \sqrt{-2}, c+d \sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$ (of course $a, b, c, d \in \mathbb{Z}$ ). Then there exists $e+f \sqrt{-2}$, where $e, f \in \mathbb{Q}$, such that

$$
\frac{a+b \sqrt{-2}}{c+d \sqrt{-2}}=e+f \sqrt{-2}
$$

Now pick $r, s \in \mathbb{Z}$ such that $|e-r| \leq 1 / 2$ and $|f-s| \leq 1 / 2$. Then

$$
\begin{aligned}
a & +b \sqrt{2} \\
& =(c+d \sqrt{-2})(e+f \sqrt{-2}) \\
& =(c+d \sqrt{-2})(r+s \sqrt{-2}+(e-r)+(f-s) \sqrt{-2}) \\
& =(c+d \sqrt{-2})(r+s \sqrt{-2})+(c+d \sqrt{-2})((e-r)+(f-s) \sqrt{-2}) .
\end{aligned}
$$

We are done if we find a norm $N$ such that $N(c+d \sqrt{-2})>N((c+d \sqrt{-2})((e-r)+(f-$ s) $\sqrt{-2}$ )). Define our $N$ to be just the standard norm, i.e. $N(x+y \sqrt{-2})=x^{2}+2 y^{2}$. (This is just the complex Euclidean norm squared.) Then since $|e-r| \leq 1 / 2$ and $|f-s| \leq 1 / 2$, $N((e-r)+(f-s) \sqrt{-2}) \leq(1 / 2)^{2}+2(1 / 2)^{2}=3 / 4$. This immediately implies the desired inequality.

Primes in $\mathbb{Z}[\sqrt{-2}]$ are precisely the irreducibles: suppose first $z \in \mathbb{Z}[\sqrt{-2}]$ is prime, and suppose $v w=z$. Then either $v$ or $w$ is a multiple of $z$, so without loss of generality write $w=u z$. Then $v u z=z$, and thus $v u=1$; in particular $v$ is a unit, showing that $z$ is irreducible.

Conversely, suppose $p$ is irreducible, and that $p \mid a b$. By assumption, the only divisor of $p$ (i.e. an element $n$ such that $p=n m$ for some $m$ ) up to unit is $p$ itself. Therefore ( $a, p$ ) $=1$ or $p$, and similarly $(b, p)=1$ or $p$. If either $(a, p)=p$ or $(b, p)=p$, then $p$ is prime as desired. If $(a, p)=(b, p)=1$, then we can write $a=A p+1$ and $b=B p+1$ for some $A$ and $B$, which implies $a b=(A p+1)(B p+1)=A B p^{2}+(A+B) p+1$; but this is not a multiple of $p$, a contradiction. Therefore we have shown that in $\mathbb{Z}[\sqrt{-2}]$ primes are irreducibles and irreducibles are primes.

Unique factorization: we first show the existence of the factorization. Pick any $z \in$ $\mathbb{Z}[\sqrt{-2}]$. We argue by induction on $N(z)$. If $N(z)=1$, then $z$ is a unit, and there is
nothing to prove. Next assume that every element of $\mathbb{Z}[\sqrt{-2}]$ with norm less than $n$ has a factorization into irreducibles, and suppose that $N(z)=n$. If $z$ is irreducible, we are done. If not, we can write $z=z_{1} z_{2}$, where $N\left(z_{1}\right), N\left(z_{2}\right)<N(z)$. By induction hypothesis, $z_{1}$ and $z_{2}$ have a factorization into irreducibles, so $z$ has one, too.

To show the uniqueness of the factorization, suppose $p_{1} \ldots p_{n}=q_{1} \ldots q_{m}$, where $p_{i}$ 's and $q_{i}$ 's are irreducibles (hence primes by our work above), is two unique factorizations of the same element. Since $p_{1}$ is prime, at least one $q_{j}$ is divisible by $p_{1}$, and by reordering the subscripts if necessary, we can assume $j=1$. But then $q_{1}$, being irreducible, is only divisible by a unit or $q_{1}$ itself; and since $p_{1}$ divides $q_{1}$ and is not a unit, $p_{1}$ and $q_{1}$ are equal up to multiplication by a unit (which, in this case, is just $\pm 1$ ). So we can cancel out $p_{1}$ and $q_{1}$ from each side and obtain $p_{2} \ldots p_{n}= \pm q_{2} \ldots q_{m}$. Repeating the same argument with $p_{2}$ and $q_{2}$ (with some reordering of subscripts), $p_{3}$ and $q_{3}$, and so on, we will have $n=m$ and $p_{i}= \pm q_{i}$ for every $i$. This proves the unique factorization.

Prime ( $=$ irreducible) elements of $\mathbb{Z}[\sqrt{-2}]$ : let $a+b \sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$ be a prime. Note that $(a+b \sqrt{-2})(a-b \sqrt{-2}) \mathbb{Z}$ is divisible by $a+b \sqrt{-2}$. On the other hand, we can write $(a+b \sqrt{-2})(a-b \sqrt{-2})=p_{1} \ldots p_{k}$, where $p_{i}$ 's are primes in integers. Therefore $p_{1} \ldots p_{k}$ is divisible by $a+b \sqrt{-2}$, and by primality one of $p_{i}:=p$ is divisible by $a+b \sqrt{-2}$. Hence we can write

$$
p=(a+b \sqrt{-2})(c+d \sqrt{-2}) .
$$

By applying the norm to both sides, we get $p^{2}=N(a+b \sqrt{-2}) N(c+d \sqrt{-2})$. Therefore $N(a+b \sqrt{-2})=p$ or $p^{2}$. In the former case, $p=a^{2}+2 b^{2}$, so it is of the form $x^{2}+2 y^{2}$. In the latter case, we have $N(c+d \sqrt{-2})=1$, so $a+b \sqrt{-2}= \pm p$, and $p$ is not of the form $x^{2}+2 y^{2}$; otherwise it is factorizable into $(x+y \sqrt{-2})(x-y \sqrt{-2})$.

In summary, if $a+b \sqrt{-2}$ is prime in $\mathbb{Z}[\sqrt{-2}]$, then either it has norm $p$ where $p$ is of the form $x^{2}+2 y^{2}$, or it has norm $p^{2}$ and equals $p$ where $p$ is not of the form $x^{2}+2 y^{2}$.

Conversely, if $a+b \sqrt{-2}$ has norm $p$ prime (in integers), then it is necessarily prime, and $p$ is of the form $x^{2}+2 y^{2}$. And if $p$ (prime in integers) is not of form $x^{2}+2 y^{2}$, then $p$ is a prime in $\mathbb{Z}[\sqrt{-2}]$; because otherwise $p=(a+b \sqrt{-2})(a-b \sqrt{-2})$ for some $a, b \in \mathbb{Z}$, and so $p=a^{2}+2 b^{2}$, a contradiction.

Therefore we have the following characterization of primes in $\mathbb{Z}[\sqrt{-2}]$ :

1. elements with norm $p$, where $p$ is an integer prime of the form $x^{2}+2 y^{2}$.
2. integer primes not of the form $x^{2}+2 y^{2}$.
3. $2=0+2 \cdot 1^{2}$ is of the form $x^{2}+2 y^{2}$. So let's consider odd primes only. A square of an integer is always 1 or $4(\bmod 8)$. Hence $x^{2}+2 y^{2}$ can only equal $1,3,4,6(\bmod 8)$. Therefore primes 5 or $7(\bmod 8)$ are not of form $x^{2}+2 y^{2}$.

Next we show that primes 1 or $3(\bmod 8)$ are of the form $x^{2}+2 y^{2}$.
Lemma. $p=1$ or $3(\bmod 8)$ if and only if $n^{2}+2 \equiv 0(\bmod p)$ for some integer $n$.

Proof. The latter statement holds if and only if -2 is a quadratic residue over $p$, i.e. $\left(\frac{-2}{p}\right)=1$. And $\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)$ is easily seen to be 1 if and only if $p$ is 1 or $3(\bmod 8)$.

By the lemma, if $p \equiv 1$ or $3(\bmod 8)$, then we can find $n$ such that $p \mid n^{2}+2=(n+$ $\sqrt{-2})(n-\sqrt{-2})$. We want to show that $p$ is reducible, so that $p=(a+b \sqrt{-2})(a-b \sqrt{-2})=$ $a^{2}+2 b^{2}$ for some $a, b \in \mathbb{Z}$. If $p$ is irreducible, then $p$ divides $n+\sqrt{-2}$ or $n-\sqrt{-2}$, and since $p$ divides the complex conjugate of what it divides, it actually divides both $n+\sqrt{-2}$ and $n-\sqrt{-2}$, and hence divides their differences, $2 \sqrt{-2}$. But this is impossible because $N(p) \leq 9$ by assumption and $N(2 \sqrt{-2})=8$. Therefore we proved that an integer prime $p$ is of the form $x^{2}+2 y^{2}$ if and only if $p$ is congruent to $1 \operatorname{or} 3 \bmod 8$.

In general, $n \in \mathbb{Z}$ is of the form $x^{2}+2 y^{2}$ if and only if the unique factorization of $n$ in $\mathbb{Z}[\sqrt{-2}]$ has no odd power of a prime 5 or $7 \bmod 8$. To prove the "if" part, note that in this case we can write $n=c^{2} \ldots(a+b \sqrt{-2})(a-b \sqrt{-2})$ for some $a, b, c \in \mathbb{Z}$. For the "only if" part, suppose the unique factorization of $n=x^{2}+2 y^{2}$ has an odd power of a prime $q$ congruent to 5 or $7(\bmod 8)$. By dividing both sides by the maximal possible even power of $q$, assume that $q$ is the maximal power of $q$ dividing $n$. Then we have $x^{2}+2 y^{2} \equiv 0(\bmod q)$, $x, y \not \equiv 0(\bmod q)$, which gives $(x / y)^{2} \equiv-2(\bmod q)$, that is, -2 is a quadratic residue $\bmod$ $q$. But this contradicts the lemma above.
3. Infinitude of 1 mod 3 primes. Suppose $p_{1}, \ldots, p_{k}$ are all the $1 \bmod 3$ primes there are, and consider the expression

$$
\begin{equation*}
\left(2 p_{1} \ldots p_{k}\right)^{2}+3 \tag{1}
\end{equation*}
$$

This is divisible only by odd 2 mod 3 primes. Hence (1) equals

$$
\begin{equation*}
q_{1} \ldots q_{l} \tag{2}
\end{equation*}
$$

where $q_{i}$ 's are odd $2 \bmod 3$ primes. Comparing residues mod 3 of (1) and (2) gives $l$ is even.

The key lemma is that all the $q_{i}$ 's are $1 \bmod 4$. If any $q_{i}:=q$ is $3 \bmod 4$, then $\left(\frac{3}{q}\right)=1$, because by quadratic reciprocity $\left(\frac{3}{q}\right)\left(\frac{q}{3}\right)=-1$ and $\left(\frac{q}{3}\right)=\left(\frac{2}{3}\right)=-1$. Now observe that $\left(2 p_{1} \ldots p_{k}\right)^{2}+3 \equiv 0(\bmod q)$. 3 is a quadratic residue $(\bmod q)$, so this is a sum of two squares. We can lift this equality in $\mathbb{Z}$, so that $x^{2}+y^{2}=c q$ for some $x, y, c \in \mathbb{Z}$ and $c<q$. But this contradicts the two squares theorem.

Hence all the $q_{i}$ 's are $1 \bmod 4$, and so $(2)$ is $1 \bmod 4$. But $(1)$ is $3 \bmod 4$, a contradiction. This proves that there are infinitely many primes $1 \bmod 3$.
infinitude of 2 mod 3 primes Now suppose $q_{1}, \ldots, q_{k}$ are all the $2 \bmod 3$ primes. Consider the quantity $\left(q_{1} \ldots q_{k}\right)^{2}+1$. By assumption this is not divisible by any $2 \bmod 3$ primes. But then this is congruent to $2 \bmod 3$, so some $2 \bmod 3$ prime must divide it, a contradiction.
4. When $s>1$, the series $\sum_{n=1}^{\infty} \mu(n) n^{-s}$ is bounded by $\sum_{n=1}^{\infty} n^{-s}$, a convergent series. Therefore our series also converges when $s>1$.

Note that formally, $\sum_{n=1}^{\infty} \mu(n) n^{-s}$ equals $1 / \zeta(s)=\prod_{p}\left(1-p^{-s}\right)$. Since both of these converge when $s>1$, they must equal. In addition, $\zeta(s) / \zeta(2 s)=\prod_{p}\left(1-p^{-2 s}\right) /\left(1-p^{-s}\right)=$ $\prod_{p}\left(1+p^{-s}\right)=\sum \mu(n)^{2} / n^{s}$.
y 5. (i) Suppose $m$ and $n$ are coprime. A multiple of a divisor of $m$ and a divisor of $n$ is always a divisor of $m n$, so $d(m n) \geq d(m) d(n)$. Conversely, suppose $x$ is a divisor of $m n$, and let $x=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ be the prime factorization of $x$ with $p_{i}$ 's all distinct. Since $m$ and $n$ are coprime, each $p_{i}^{a_{i}}$ divides precisely one of either $m$ or $n$. Collecting the factors that divide only $m$ and the factors that divide only $n$, we see that $x$ is a multiple of a divisor of $m$ and a divisor of $n$. This implies $d(m n) \leq d(n) d(m)$. Therefore $d(m n)=d(m) d(n)$.
$d\left(p^{a}\right)=a+1$ for any prime power $p^{a}$ : this is easy because $p^{a}$ has divisors precisely $1, p, p^{2}, \ldots, p^{a}$.
(ii) If $n=\prod_{i} p_{i}^{a_{i}}$, then we have $d(n) / n^{\epsilon}=\prod_{i}\left(a_{i}+1\right) / p_{i}^{a_{i} \epsilon}$. The key observation is that $\left(a_{i}+1\right) / p_{i}^{a_{i} \epsilon}$ is bounded by 1 for all but finitely many pairs of $a_{i} \in \mathbb{N}$ and $p_{i}$ prime; this is because for all $p_{i}$ sufficiently large (e.g. $\left.p_{i}^{\epsilon}>10000\right),\left(a_{i}+1\right) / p_{i}^{a_{i} \epsilon}<1$ for all $a_{i}$; if $p_{i}$ is not large enough, then for all sufficiently large $a_{i},\left(a_{i}+1\right) / p_{i}^{a_{i} \epsilon}<1$, because this quantity approaches zero as $a_{i} \rightarrow \infty$. Therefore for any $n$, we have

$$
\frac{d(n)}{n^{\epsilon}} \leq \prod \frac{a_{i}+1}{p_{i}^{a_{i} \epsilon}}
$$

where the product is taken over all the pairs $\left(a_{i}, p_{i}\right)$ for which $\left(a_{i}+1\right) / p_{i}^{a_{i} \epsilon} \geq 1$ (we just
showed that the number of such pairs is finite).
(iii) If $s \leq 1$ then $\sum d(n) / n^{s}$ is bounded below by $\sum 1 / n^{s}$, which diverges. If $s>1$, then by the previous exercise, for any $\epsilon<s-1$ we have $\sum d(n) / n^{s} \sum C(\epsilon) n^{\epsilon-s}$, which converges because $\epsilon-s<-1$. Therefore $\sum d(n) / n^{s}$ converges precisely when $s>1$.

Next, in the range of convergence, note that we can write

$$
\sum \frac{d(n)}{n^{s}}=\prod_{p}\left(1+\frac{d(p)}{p^{s}}+\frac{d\left(p^{2}\right)}{p^{2 s}}+\ldots\right)
$$

which equals

$$
\prod_{p}\left(1+\frac{2}{p^{s}}+\frac{3}{p^{2 s}}+\ldots\right)
$$

Using the Taylor expansion

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2} \ldots(|x|<1)
$$

we see that this equals

$$
\prod_{p} \frac{1}{\left(1-p^{-s}\right)^{2}}=(\zeta(s))^{2}
$$

