
MATH 152 Problem set 6 solutions

1. Z[
√
−2] is a Euclidean domain (i.e. has a division algorithm): the idea is to approxi-

mate the quotient by an element in Z[
√
−2]. More precisely, let a+b

√
−2, c+d

√
−2 ∈ Z[

√
−2]

(of course a, b, c, d ∈ Z). Then there exists e+ f
√
−2, where e, f ∈ Q, such that

a+ b
√
−2

c+ d
√
−2

= e+ f
√
−2.

Now pick r, s ∈ Z such that |e− r| ≤ 1/2 and |f − s| ≤ 1/2. Then

a+ b
√

2

= (c+ d
√
−2)(e+ f

√
−2)

= (c+ d
√
−2)(r + s

√
−2 + (e− r) + (f − s)

√
−2)

= (c+ d
√
−2)(r + s

√
−2) + (c+ d

√
−2)((e− r) + (f − s)

√
−2).

We are done if we find a norm N such that N(c+d
√
−2) > N((c+d

√
−2)((e− r) + (f −

s)
√
−2)). Define our N to be just the standard norm, i.e. N(x + y

√
−2) = x2 + 2y2. (This

is just the complex Euclidean norm squared.) Then since |e − r| ≤ 1/2 and |f − s| ≤ 1/2,
N((e − r) + (f − s)

√
−2) ≤ (1/2)2 + 2(1/2)2 = 3/4. This immediately implies the desired

inequality.

Primes in Z[
√
−2] are precisely the irreducibles : suppose first z ∈ Z[

√
−2] is prime, and

suppose vw = z. Then either v or w is a multiple of z, so without loss of generality write
w = uz. Then vuz = z, and thus vu = 1; in particular v is a unit, showing that z is
irreducible.

Conversely, suppose p is irreducible, and that p | ab. By assumption, the only divisor of
p (i.e. an element n such that p = nm for some m) up to unit is p itself. Therefore (a, p) = 1
or p, and similarly (b, p) = 1 or p. If either (a, p) = p or (b, p) = p, then p is prime as desired.
If (a, p) = (b, p) = 1, then we can write a = Ap + 1 and b = Bp + 1 for some A and B,
which implies ab = (Ap + 1)(Bp + 1) = ABp2 + (A + B)p + 1; but this is not a multiple
of p, a contradiction. Therefore we have shown that in Z[

√
−2] primes are irreducibles and

irreducibles are primes.

Unique factorization: we first show the existence of the factorization. Pick any z ∈
Z[
√
−2]. We argue by induction on N(z). If N(z) = 1, then z is a unit, and there is
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nothing to prove. Next assume that every element of Z[
√
−2] with norm less than n has a

factorization into irreducibles, and suppose that N(z) = n. If z is irreducible, we are done.
If not, we can write z = z1z2, where N(z1), N(z2) < N(z). By induction hypothesis, z1 and
z2 have a factorization into irreducibles, so z has one, too.

To show the uniqueness of the factorization, suppose p1 . . . pn = q1 . . . qm, where pi’s and
qi’s are irreducibles (hence primes by our work above), is two unique factorizations of the
same element. Since p1 is prime, at least one qj is divisible by p1, and by reordering the
subscripts if necessary, we can assume j = 1. But then q1, being irreducible, is only divisible
by a unit or q1 itself; and since p1 divides q1 and is not a unit, p1 and q1 are equal up to
multiplication by a unit (which, in this case, is just ±1). So we can cancel out p1 and q1 from
each side and obtain p2 . . . pn = ±q2 . . . qm. Repeating the same argument with p2 and q2
(with some reordering of subscripts), p3 and q3, and so on, we will have n = m and pi = ±qi
for every i. This proves the unique factorization.

Prime(=irreducible) elements of Z[
√
−2]: let a + b

√
−2 ∈ Z[

√
−2] be a prime. Note

that (a + b
√
−2)(a − b

√
−2)Z is divisible by a + b

√
−2. On the other hand, we can write

(a + b
√
−2)(a − b

√
−2) = p1 . . . pk, where pi’s are primes in integers. Therefore p1 . . . pk is

divisible by a + b
√
−2, and by primality one of pi := p is divisible by a + b

√
−2. Hence we

can write
p = (a+ b

√
−2)(c+ d

√
−2).

By applying the norm to both sides, we get p2 = N(a+ b
√
−2)N(c+ d

√
−2). Therefore

N(a + b
√
−2) = p or p2. In the former case, p = a2 + 2b2, so it is of the form x2 + 2y2. In

the latter case, we have N(c + d
√
−2) = 1, so a + b

√
−2 = ±p, and p is not of the form

x2 + 2y2; otherwise it is factorizable into (x+ y
√
−2)(x− y

√
−2).

In summary, if a+ b
√
−2 is prime in Z[

√
−2], then either it has norm p where p is of the

form x2 + 2y2, or it has norm p2 and equals p where p is not of the form x2 + 2y2.

Conversely, if a+ b
√
−2 has norm p prime (in integers), then it is necessarily prime, and

p is of the form x2 + 2y2. And if p (prime in integers) is not of form x2 + 2y2, then p is a
prime in Z[

√
−2]; because otherwise p = (a + b

√
−2)(a − b

√
−2) for some a, b ∈ Z, and so

p = a2 + 2b2, a contradiction.

Therefore we have the following characterization of primes in Z[
√
−2]:

1. elements with norm p, where p is an integer prime of the form x2 + 2y2.

2. integer primes not of the form x2 + 2y2.
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2. 2 = 0 + 2 · 12 is of the form x2 + 2y2. So let’s consider odd primes only. A square
of an integer is always 1 or 4 (mod 8). Hence x2 + 2y2 can only equal 1, 3, 4, 6 (mod 8).
Therefore primes 5 or 7 (mod 8) are not of form x2 + 2y2.

Next we show that primes 1 or 3 (mod 8) are of the form x2 + 2y2.

Lemma. p = 1 or 3 (mod 8) if and only if n2 + 2 ≡ 0 (mod p) for some integer n.

Proof. The latter statement holds if and only if−2 is a quadratic residue over p, i.e. (−2
p

) = 1.

And (−2
p

) = (−1
p

)(2
p
) is easily seen to be 1 if and only if p is 1 or 3 (mod 8).

By the lemma, if p ≡ 1 or 3 (mod 8), then we can find n such that p | n2 + 2 = (n +√
−2)(n−

√
−2). We want to show that p is reducible, so that p = (a+ b

√
−2)(a− b

√
−2) =

a2 + 2b2 for some a, b ∈ Z. If p is irreducible, then p divides n +
√
−2 or n −

√
−2, and

since p divides the complex conjugate of what it divides, it actually divides both n +
√
−2

and n −
√
−2, and hence divides their differences, 2

√
−2. But this is impossible because

N(p) ≤ 9 by assumption and N(2
√
−2) = 8. Therefore we proved that an integer prime p

is of the form x2 + 2y2 if and only if p is congruent to 1 or 3 mod 8.

In general, n ∈ Z is of the form x2 + 2y2 if and only if the unique factorization of n in
Z[
√
−2] has no odd power of a prime 5 or 7 mod 8. To prove the “if” part, note that in

this case we can write n = c2 . . . (a + b
√
−2)(a− b

√
−2) for some a, b, c ∈ Z. For the “only

if” part, suppose the unique factorization of n = x2 + 2y2 has an odd power of a prime q
congruent to 5 or 7 (mod 8). By dividing both sides by the maximal possible even power of
q, assume that q is the maximal power of q dividing n. Then we have x2 + 2y2 ≡ 0 (mod q),
x, y 6≡ 0 (mod q), which gives (x/y)2 ≡ −2 (mod q), that is, −2 is a quadratic residue mod
q. But this contradicts the lemma above.

3. Infinitude of 1 mod 3 primes. Suppose p1, . . . , pk are all the 1 mod 3 primes there are,
and consider the expression

(2p1 . . . pk)
2 + 3. (1)

This is divisible only by odd 2 mod 3 primes. Hence (1) equals

q1 . . . ql (2)

where qi’s are odd 2 mod 3 primes. Comparing residues mod 3 of (1) and (2) gives l is even.
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The key lemma is that all the qi’s are 1 mod 4. If any qi := q is 3 mod 4, then (3
q
) = 1,

because by quadratic reciprocity (3
q
)( q

3
) = −1 and ( q

3
) = (2

3
) = −1. Now observe that

(2p1 . . . pk)
2 + 3 ≡ 0 (mod q). 3 is a quadratic residue (mod q), so this is a sum of two

squares. We can lift this equality in Z, so that x2 + y2 = cq for some x, y, c ∈ Z and c < q.
But this contradicts the two squares theorem.

Hence all the qi’s are 1 mod 4, and so (2) is 1 mod 4. But (1) is 3 mod 4, a contradiction.
This proves that there are infinitely many primes 1 mod 3.

infinitude of 2 mod 3 primes Now suppose q1, . . . , qk are all the 2 mod 3 primes. Con-
sider the quantity (q1 . . . qk)

2 +1. By assumption this is not divisible by any 2 mod 3 primes.
But then this is congruent to 2 mod 3, so some 2 mod 3 prime must divide it, a contradiction.

4. When s > 1, the series
∑∞

n=1 µ(n)n−s is bounded by
∑∞

n=1 n
−s, a convergent series.

Therefore our series also converges when s > 1.

Note that formally,
∑∞

n=1 µ(n)n−s equals 1/ζ(s) =
∏

p(1 − p−s). Since both of these

converge when s > 1, they must equal. In addition, ζ(s)/ζ(2s) =
∏

p(1− p−2s)/(1− p−s) =∏
p(1 + p−s) =

∑
µ(n)2/ns.

y 5. (i) Suppose m and n are coprime. A multiple of a divisor of m and a divisor of n is
always a divisor of mn, so d(mn) ≥ d(m)d(n). Conversely, suppose x is a divisor of mn, and
let x = pa1

1 . . . pak
k be the prime factorization of x with pi’s all distinct. Since m and n are

coprime, each pai
i divides precisely one of either m or n. Collecting the factors that divide

only m and the factors that divide only n, we see that x is a multiple of a divisor of m and
a divisor of n. This implies d(mn) ≤ d(n)d(m). Therefore d(mn) = d(m)d(n).

d(pa) = a + 1 for any prime power pa: this is easy because pa has divisors precisely
1, p, p2, . . . , pa.

(ii) If n =
∏

i p
ai
i , then we have d(n)/nε =

∏
i(ai + 1)/paiε

i . The key observation is that
(ai + 1)/paiε

i is bounded by 1 for all but finitely many pairs of ai ∈ N and pi prime; this
is because for all pi sufficiently large (e.g. pεi > 10000), (ai + 1)/paiε

i < 1 for all ai; if pi is
not large enough, then for all sufficiently large ai, (ai + 1)/paiε

i < 1, because this quantity
approaches zero as ai →∞. Therefore for any n, we have

d(n)

nε
≤
∏ ai + 1

paiε
i

,

where the product is taken over all the pairs (ai, pi) for which (ai + 1)/paiε
i ≥ 1 (we just

4



showed that the number of such pairs is finite).

(iii) If s ≤ 1 then
∑
d(n)/ns is bounded below by

∑
1/ns, which diverges. If s > 1, then

by the previous exercise, for any ε < s− 1 we have
∑
d(n)/ns

∑
C(ε)nε−s, which converges

because ε− s < −1. Therefore
∑
d(n)/ns converges precisely when s > 1.

Next, in the range of convergence, note that we can write∑ d(n)

ns
=
∏
p

(
1 +

d(p)

ps
+
d(p2)

p2s
+ . . .

)
,

which equals ∏
p

(
1 +

2

ps
+

3

p2s
+ . . .

)
.

Using the Taylor expansion

1

(1− x)2
= 1 + 2x+ 3x2 . . . (|x| < 1),

we see that this equals ∏
p

1

(1− p−s)2
= (ζ(s))2.
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