
MATH 152 Problem set 5 solutions

1. To make it clearer what the problem is asking to prove: any S1 and S2 with the
properties as described in the problem are the set of quadratic residue and the set of quadratic
nonresidues, respectively.

Fix a primitive element g (mod p). Then g ∈ S2, since otherwise g2 ∈ S1, g
3 ∈ S1, . . . ,

and thus S1 = {1, 2, . . . , p − 1} and S2 = φ; but we assumed that both Si’s are nonzero, a
contradiction. Furthermore, g2 ∈ S1 because it is a multiple of elements in S2. This implies
that all the even powers of g are contained in S1, and this in turn implies that all the odd
powers of g are contained in S2, since every odd power of g is g times an even power of g.
This completes the proof.

2. (1
p
) = (4

p
) = (9

p
) = 1 for all p. Therefore if (2

p
) = 1 or (5

p
) = 1, we’re done. If neither

holds, then (10
p

) = 1, and we’re done.

3. S(0, p) =
∑p

n=1(
n2

p
) = p − 1, since (n2

p
) is equal to 1 if n 6≡ 0 (mod p) and is zero

otherwise.

Next,

p∑
a=1

S(a, p) =

p∑
a=1

p∑
n=1

(n
p

)(n+ a

p

)
=

p∑
n=1

p∑
a=1

(n
p

)(n+ a

p

)
=

p∑
n=1

(n
p

) p∑
a=1

(n+ a

p

)
= 0

because
∑p

a=1(
n+a

p
) = 0.

4. By definition S(a, p) =
∑p

n=1(
n2+na

p
). Using the change of variable n = ma, we obtain

S(a, p) =
∑p

m=1(
m2a2+ma2

p
) =

∑p
m=1(

m2+m
p

) = S(1, p).

By this and the results of the previous problem, (p − 1)S(1, p) + (p − 1) = 0. This
immediately implies S(1, p) = −1.
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5. Suppose p1, . . . , pr are all the 1 mod 4 primes there are, and consider (2p1 . . . pr)
2 + 1.

This is divisible only by primes 1 mod 3. Therefore, by what we know about a sum
of two squares, (2p1 . . . pr)

2 + 1 is a square of an integer, say x2. But then this implies
1 = x2 − (2p1 . . . pr)

2 = (x+ 2p1 . . . pr)(x− 2p1 . . . pr), an impossibility.

6. Fix ε > 0. Then from the Taylor expansion of f around φ, i.e.

f(x) =
√

5(x− φ) + (x− φ)2,

it follows that |f(x)| < (
√

5+ε)|x−φ| whenever |x−φ| < ε. (One may think c = (
√

5+ε)−1.)

Now if q ∈ Z has an absolute value strictly greater than 1/2ε, then there exists a ∈ Z such
that |a/q− φ| < ε. Without loss of generality, pick a that minimizes |a/q− φ|. Substituting
x = a/q in the previous inequality above,

(
√

5 + ε)|a/q − φ| > |(a/q)2 − a/q − 1| = |a2 − aq − q2|/q2 ≥ 1/q2.

Therefore,
|a/q − φ| > (

√
5 + ε)−1/q2.

Since a minimizes the left side, for all b ∈ Z we have

|b/q − φ| > (
√

5 + ε)−1/q2.

Next suppose q ∈ Z has an absolute value less than or equal to 1/2ε. There are only
finitely many such q’s, so we are done if we show that for each q there are only finitely many
integers a such that |a/q − φ| ≤ (

√
5 + ε)−1/q2. But this is plain obvious.
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