MATH 152 Problem set 5 solutions

1. To make it clearer what the problem is asking to prove: any \mathcal{S}_{1} and \mathcal{S}_{2} with the properties as described in the problem are the set of quadratic residue and the set of quadratic nonresidues, respectively.

Fix a primitive element $g(\bmod p)$. Then $g \in \mathcal{S}_{2}$, since otherwise $g^{2} \in \mathcal{S}_{1}, g^{3} \in \mathcal{S}_{1}, \ldots$, and thus $\mathcal{S}_{1}=\{1,2, \ldots, p-1\}$ and $\mathcal{S}_{2}=\phi$; but we assumed that both \mathcal{S}_{i} 's are nonzero, a contradiction. Furthermore, $g^{2} \in \mathcal{S}_{1}$ because it is a multiple of elements in \mathcal{S}_{2}. This implies that all the even powers of g are contained in \mathcal{S}_{1}, and this in turn implies that all the odd powers of g are contained in \mathcal{S}_{2}, since every odd power of g is g times an even power of g. This completes the proof.
2. $\left(\frac{1}{p}\right)=\left(\frac{4}{p}\right)=\left(\frac{9}{p}\right)=1$ for all p. Therefore if $\left(\frac{2}{p}\right)=1$ or $\left(\frac{5}{p}\right)=1$, we're done. If neither holds, then $\left(\frac{10}{p}\right)=1$, and we're done.
3. $S(0, p)=\sum_{n=1}^{p}\left(\frac{n^{2}}{p}\right)=p-1$, since $\left(\frac{n^{2}}{p}\right)$ is equal to 1 if $n \not \equiv 0(\bmod p)$ and is zero otherwise.

Next,

$$
\begin{aligned}
\sum_{a=1}^{p} S(a, p) & =\sum_{a=1}^{p} \sum_{n=1}^{p}\left(\frac{n}{p}\right)\left(\frac{n+a}{p}\right) \\
& =\sum_{n=1}^{p} \sum_{a=1}^{p}\left(\frac{n}{p}\right)\left(\frac{n+a}{p}\right) \\
& =\sum_{n=1}^{p}\left(\frac{n}{p}\right) \sum_{a=1}^{p}\left(\frac{n+a}{p}\right) \\
& =0
\end{aligned}
$$

because $\sum_{a=1}^{p}\left(\frac{n+a}{p}\right)=0$.
4. By definition $S(a, p)=\sum_{n=1}^{p}\left(\frac{n^{2}+n a}{p}\right)$. Using the change of variable $n=m a$, we obtain $S(a, p)=\sum_{m=1}^{p}\left(\frac{m^{2} a^{2}+m a^{2}}{p}\right)=\sum_{m=1}^{p}\left(\frac{m^{2}+m}{p}\right)=S(1, p)$.

By this and the results of the previous problem, $(p-1) S(1, p)+(p-1)=0$. This immediately implies $S(1, p)=-1$.
5. Suppose p_{1}, \ldots, p_{r} are all the $1 \bmod 4$ primes there are, and consider $\left(2 p_{1} \ldots p_{r}\right)^{2}+1$. This is divisible only by primes $1 \bmod 3$. Therefore, by what we know about a sum of two squares, $\left(2 p_{1} \ldots p_{r}\right)^{2}+1$ is a square of an integer, say x^{2}. But then this implies $1=x^{2}-\left(2 p_{1} \ldots p_{r}\right)^{2}=\left(x+2 p_{1} \ldots p_{r}\right)\left(x-2 p_{1} \ldots p_{r}\right)$, an impossibility.
6. Fix $\varepsilon>0$. Then from the Taylor expansion of f around ϕ, i.e.

$$
f(x)=\sqrt{5}(x-\phi)+(x-\phi)^{2}
$$

it follows that $|f(x)|<(\sqrt{5}+\varepsilon)|x-\phi|$ whenever $|x-\phi|<\varepsilon$. (One may think $c=(\sqrt{5}+\varepsilon)^{-1}$.)
Now if $q \in \mathbb{Z}$ has an absolute value strictly greater than $1 / 2 \varepsilon$, then there exists $a \in \mathbb{Z}$ such that $|a / q-\phi|<\varepsilon$. Without loss of generality, pick a that minimizes $|a / q-\phi|$. Substituting $x=a / q$ in the previous inequality above,

$$
(\sqrt{5}+\varepsilon)|a / q-\phi|>\left|(a / q)^{2}-a / q-1\right|=\left|a^{2}-a q-q^{2}\right| / q^{2} \geq 1 / q^{2}
$$

Therefore,

$$
|a / q-\phi|>(\sqrt{5}+\varepsilon)^{-1} / q^{2} .
$$

Since a minimizes the left side, for all $b \in \mathbb{Z}$ we have

$$
|b / q-\phi|>(\sqrt{5}+\varepsilon)^{-1} / q^{2}
$$

Next suppose $q \in \mathbb{Z}$ has an absolute value less than or equal to $1 / 2 \varepsilon$. There are only finitely many such q 's, so we are done if we show that for each q there are only finitely many integers a such that $|a / q-\phi| \leq(\sqrt{5}+\varepsilon)^{-1} / q^{2}$. But this is plain obvious.

