MATH 152 Problem set 5 solutions

1. To make it clearer what the problem is asking to prove: any S_1 and S_2 with the properties as described in the problem are the set of quadratic residue and the set of quadratic nonresidues, respectively.

Fix a primitive element $g \pmod{p}$. Then $g \in S_2$, since otherwise $g^2 \in S_1$, $g^3 \in S_1$, ..., and thus $S_1 = \{1, 2, ..., p-1\}$ and $S_2 = \phi$; but we assumed that both S_i 's are nonzero, a contradiction. Furthermore, $g^2 \in S_1$ because it is a multiple of elements in S_2 . This implies that all the even powers of g are contained in S_1 , and this in turn implies that all the odd powers of g are contained in S_2 , since every odd power of g is g times an even power of g. This completes the proof.

2. $(\frac{1}{p}) = (\frac{4}{p}) = (\frac{9}{p}) = 1$ for all p. Therefore if $(\frac{2}{p}) = 1$ or $(\frac{5}{p}) = 1$, we're done. If neither holds, then $(\frac{10}{p}) = 1$, and we're done.

3. $S(0,p) = \sum_{n=1}^{p} \left(\frac{n^2}{p}\right) = p-1$, since $\left(\frac{n^2}{p}\right)$ is equal to 1 if $n \not\equiv 0 \pmod{p}$ and is zero otherwise.

Next,

$$\sum_{a=1}^{p} S(a,p) = \sum_{a=1}^{p} \sum_{n=1}^{p} \left(\frac{n}{p}\right) \left(\frac{n+a}{p}\right)$$
$$= \sum_{n=1}^{p} \sum_{a=1}^{p} \left(\frac{n}{p}\right) \left(\frac{n+a}{p}\right)$$
$$= \sum_{n=1}^{p} \left(\frac{n}{p}\right) \sum_{a=1}^{p} \left(\frac{n+a}{p}\right)$$
$$= 0$$

because $\sum_{a=1}^{p} \left(\frac{n+a}{p}\right) = 0.$

4. By definition $S(a, p) = \sum_{n=1}^{p} \left(\frac{n^2 + na}{p}\right)$. Using the change of variable n = ma, we obtain $S(a, p) = \sum_{m=1}^{p} \left(\frac{m^2 a^2 + ma^2}{p}\right) = \sum_{m=1}^{p} \left(\frac{m^2 + ma}{p}\right) = S(1, p).$

By this and the results of the previous problem, (p-1)S(1,p) + (p-1) = 0. This immediately implies S(1,p) = -1.

5. Suppose p_1, \ldots, p_r are all the 1 mod 4 primes there are, and consider $(2p_1 \ldots p_r)^2 + 1$. This is divisible only by primes 1 mod 3. Therefore, by what we know about a sum of two squares, $(2p_1 \ldots p_r)^2 + 1$ is a square of an integer, say x^2 . But then this implies $1 = x^2 - (2p_1 \ldots p_r)^2 = (x + 2p_1 \ldots p_r)(x - 2p_1 \ldots p_r)$, an impossibility.

6. Fix $\varepsilon > 0$. Then from the Taylor expansion of f around ϕ , i.e.

$$f(x) = \sqrt{5}(x - \phi) + (x - \phi)^2,$$

it follows that $|f(x)| < (\sqrt{5} + \varepsilon)|x - \phi|$ whenever $|x - \phi| < \varepsilon$. (One may think $c = (\sqrt{5} + \varepsilon)^{-1}$.)

Now if $q \in \mathbb{Z}$ has an absolute value strictly greater than $1/2\varepsilon$, then there exists $a \in \mathbb{Z}$ such that $|a/q - \phi| < \varepsilon$. Without loss of generality, pick a that minimizes $|a/q - \phi|$. Substituting x = a/q in the previous inequality above,

$$(\sqrt{5} + \varepsilon)|a/q - \phi| > |(a/q)^2 - a/q - 1| = |a^2 - aq - q^2|/q^2 \ge 1/q^2.$$

Therefore,

$$|a/q - \phi| > (\sqrt{5} + \varepsilon)^{-1}/q^2.$$

Since a minimizes the left side, for all $b \in \mathbb{Z}$ we have

$$|b/q - \phi| > (\sqrt{5} + \varepsilon)^{-1}/q^2$$

Next suppose $q \in \mathbb{Z}$ has an absolute value less than or equal to $1/2\varepsilon$. There are only finitely many such q's, so we are done if we show that for each q there are only finitely many integers a such that $|a/q - \phi| \leq (\sqrt{5} + \varepsilon)^{-1}/q^2$. But this is plain obvious.