MATH 152 Problem set 4 solutions

As usual, p, p_{i}, q and the like represent a prime number.
1.First we prove that 10 is a quadratic non-residue $(\bmod p)$. We have

$$
\left(\frac{10}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)
$$

and none of the terms on the right side are zero because $p \geq 7$ by assumption. Let's compute each term:

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}=1
$$

since $p \equiv 7(\bmod 40)$ implies $p \equiv 7(\bmod 8)$. Also

$$
\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)=\left(\frac{2}{5}\right)=-1 .
$$

Here the first equality follows from quadratic reciprocity, the second from $p \equiv 7(\bmod 40)$ $\Rightarrow p \equiv 2(\bmod 5)$. This shows that 10 is a quadradic non-residue $(\bmod p)$.

Next we show that 10 is a primitive root $(\bmod p)$, or equivalently, 10 has order $p-1$. By assumption $p-1=2 q$, so 10 has either order $2, q$ or $p-1$. But q cannot be the order of 10 : since 10 is a nonresidue and q is odd 10^{q} is a nonresidue; in particular, $10^{q} \not \equiv 1(\bmod$ $p)$. Also, if 2 were the order of 10 , i.e. $10^{2}=100 \equiv 1(\bmod p)$, then $99 \equiv 3 \cdot 3 \cdot 11 \equiv 0(\bmod$ $p)$; this implies $p=3$ or 11 , but neither of them are $7(\bmod 40)$, so this is impossible either. Therefore, the order of $10(\bmod p)$ is $p-1$.
2. First suppose n is odd, and write $n=p_{1} p_{2} \ldots p_{k}$ where p_{i} are odd primes. Our goal is to investigate for which primes $p\left(\frac{n}{p}\right)=1$.

Case $p \equiv 1(\bmod 4):$ By quadratic reciprocity, we have

$$
\left(\frac{p_{1} \ldots p_{k}}{p}\right)=\left(\frac{p_{1}}{p}\right) \ldots\left(\frac{p_{k}}{p}\right)=\left(\frac{p}{p_{1}}\right) \ldots\left(\frac{p}{p_{k}}\right) .
$$

This value is 1 if and only if $\left(\frac{p}{p_{i}}\right)=-1$ for an even number of i 's. And this holds if and only if for each $i=1, \ldots, k$ we have $p \equiv a_{i}\left(\bmod p_{i}\right)$, where a_{i} is never zero $\left(\bmod p_{i}\right)$ and is a quadratic nonresidue $\left(\bmod p_{i}\right)$ for an even number of i 's. For each possible choice of a_{i} 's, together with the relation $p \equiv 1(\bmod 4)$, the Chinese remainder theorem gives the unique residue class mod $4 p_{1} \ldots p_{k}=4 n$ to which p belongs.

Case $p \equiv 3(\bmod 4)$: here the quadratic reciprocity gives

$$
\left(\frac{p_{1} \ldots p_{k}}{p}\right)=\left(\frac{p_{1}}{p}\right) \ldots\left(\frac{p_{k}}{p}\right)=(-1)^{\beta}\left(\frac{p}{p_{1}}\right) \ldots\left(\frac{p}{p_{k}}\right)
$$

(here β equals the number of p_{i} 's that are $3 \bmod 4$). This is 1 if and only if $\left(\frac{p}{p_{i}}\right)=-1$ for an even number of p_{i} 's if β is even, and for an odd number of p_{i} 's if β is odd. And this happens if and only if for each $i=1, \ldots, k, p \equiv b_{i}\left(\bmod p_{i}\right)$, where b_{i} is never zero (mod $\left.p_{i}\right)$ and is a quadratic nonresidue $\left(\bmod p_{i}\right)$ for an even (in case β is even) or odd (in case β is odd) number of i 's. Same as earlier, for each possible choice of b_{i} 's, together with the relation $p \equiv 3(\bmod 4)$, the Chinese remainder theorem determines the residue class $\bmod 4 n$ corresponding to p.

If n is even, so that $n=2 p_{1} \ldots p_{k}$ where p_{i} are odd primes, then we proceed the same as above (we also have to divide by the cases as to whether $p \equiv 1$ or $3(\bmod 4)$), except that we will now have $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$ among the factors of $\left(\frac{n}{p}\right)$. This gives an equivalence relation $p \equiv c_{0}(\bmod 8)$ for some c_{0}, in addition to $p \equiv c_{i}\left(\bmod p_{i}\right)$ that we will obtain by the same method as above. Then the Chinese remainder theorem gives the corresponding residue class of $p \bmod 8 p_{1} \ldots p_{k}=4 n$.
3. (i) Pick a primitive element $g(\bmod p)$. By assumption $g^{2 d+1}$ has order $p-1$ for all $d=0,1,2, \ldots$. This means $(2 d+1, p-1)=1$ for all d, because if this does not hold for some d then $g^{2 d+1}$ will have order at most $(p-1) /(2 d+1, p-1)<p-1$, a contradiction. Therefore $p-1$ is a power of 2 .
(ii) Suppose $p=2^{k}+1$ is prime. We want to show that k has no odd factors. Recall the following factorization formula:

$$
a^{m}+1=(a+1)\left(a^{m-1}-a^{m-2}+\ldots-a+1\right)
$$

where m is an odd number. Now suppose k has an odd factor, i.e. $k=m 2^{n}$ for an odd m. Then

$$
2^{k}+1=\left(2^{2^{n}}\right)^{m}+1=\left(2^{2^{n}}+1\right)(\ldots)
$$

Comparing both sides makes it clear that the number in (...) is strictly greater than 1 . This shows that $2^{k}+1$ is composite, a contradiction.
(iii) Pick a primitive element $g(\bmod p)$. Then for any $d=0,1,2, \ldots, g^{(2 d+1) r}=1$ implies $p-1 \mid(2 d+1) r$ But $p-1=2^{2^{n}}$, so this means $p-1 \mid r$. This shows that $g^{2 d+1}$ has order $p-1$, completing the proof.
4. Suppose $A^{2}=2$. Write $A=\sum_{i=0}^{\infty} a_{i} 7^{i}$, where a_{i} is between 0 and 6 inclusive. Note
that no matter what the a_{i} 's are, we don't need to worry about A being divergent, because its N th partial sum $\sum_{i=0}^{N} a_{i} 7^{i}$ is a Cauchy sequence in the p-adic norm.

We have $A^{2} \equiv 2(\bmod 7) \Rightarrow a_{0}^{2} \equiv 2(\bmod 7)$. So we could say $a_{0}=3$. (Or we could also say $a_{0}=4$, which will give the "negative square root.")

We also have $A^{2} \equiv 2(\bmod 49) \Rightarrow\left(a_{0}+a_{1} 7\right)^{2} \equiv 2(\bmod 49)$. Then $a_{1}=1$ is the only possibility (recall Exercise 3 from the previous problem set).

Similarly, $A^{2} \equiv 2\left(\bmod 7^{3}=343\right) \Rightarrow\left(a_{0}+a_{1} 7+a_{2} 7^{2}\right)^{2} \equiv 2(\bmod 343) . a_{2}=2$ is forced.
We can continue this process to obtain a_{3}, a_{4}, \ldots and so on. In general, we will have $\left(\sum_{i=0}^{N} a_{i} 7^{i}\right)^{2} \equiv 2\left(\bmod 7^{N+1}\right)$. This means that $\left|\left(\sum_{i=0}^{N} a_{i} 7^{i}\right)^{2}-2\right|_{p} \leq p^{-(N+1)}$, which approaches 0 as $N \rightarrow \infty$. So we see that this process will indeed give a square root of 2 .
5. $D:=\left\{x \in \mathbb{Q}:|x|_{p}<1\right\}$ is a p-adic disc with radius 1 and center 0 . Note that $x \in D \Leftrightarrow x=p^{k} m$, where $k \geq 1$ and $|m|_{p}=1$.

A p-adic disc with radius 1 and center $p^{\alpha} n$, where $\alpha \geq 1$ and $|n|_{p}=1$ is

$$
D^{\prime}=\left\{x \in \mathbb{Q}:\left|x-p^{\alpha} n\right|_{p}<1\right\} .
$$

And we have $x \in D^{\prime} \Leftrightarrow x-p^{\alpha} n=p^{k} m$, where $k \geq 1$ and $|m|_{p}=1$.

The question is asking us to show $D=D^{\prime}$. This is clear because $x \in D \Leftrightarrow x=p^{k} m \Leftrightarrow$ $x-p^{\alpha} n=p^{k} m-p^{\alpha} n=p^{\min (k, \alpha)} l \Leftrightarrow x \in D^{\prime}$, where l here is whatever expression that makes the equality hold.
6. (a) $x^{2}+10 x-10 \equiv 0 \Leftrightarrow(x+5)^{2} \equiv 35(\bmod p)$. If 35 is a quadratic residue $(\bmod p)$, i.e. if $35=g^{2 k}$ for some primitive element g, then we have two distinct roots $x \equiv-5 \pm g^{k}$ $(\bmod p)$.

In addition, if this equation has any solution other than $x \equiv-5$, it means 35 is a quadratic residue $(\bmod p)$. Therefore $n=35$.
(b) Our goal is to find odd p 's such that $\left(\frac{35}{p}\right)=1$. First suppose $p \equiv 1(\bmod 4)$. Then by quadratic reciprocity

$$
\left(\frac{35}{p}\right)=\left(\frac{7}{p}\right)\left(\frac{5}{p}\right)=\left(\frac{p}{7}\right)\left(\frac{p}{5}\right) .
$$

This equals 1 if and only if p is a quadratic residue $\bmod 5$ and 7 , or p is a quadratic nonresidue
$\bmod 5$ and 7 . Therefore either $p \equiv 1,4(\bmod 5)$ and $p \equiv 1,2,4(\bmod 7)$, or $p \equiv 2,3(\bmod 5)$ and $p \equiv 3,5,6(\bmod 7)$.

On the other hand, if $p \equiv 3(\bmod 4)$, then

$$
\left(\frac{35}{p}\right)=\left(\frac{7}{p}\right)\left(\frac{5}{p}\right)=-\left(\frac{p}{7}\right)\left(\frac{p}{5}\right) .
$$

This equals 1 if and only if p is a residue $\bmod 5$ and nonresidue $\bmod 7$, or p is a nonresidue $\bmod 5$ and residue $\bmod 7$. Therefore either $p \equiv 1,4(\bmod 5)$ and $p \equiv 3,5,6(\bmod 7)$, or $p \equiv 2,3(\bmod 5)$ and $p \equiv 1,2,4(\bmod 7)$.

