
MATH 152 Problem set 4 solutions

As usual, p, pi, q and the like represent a prime number.

1.First we prove that 10 is a quadratic non-residue (mod p). We have(10

p

)
=

(2

p

)(5

p

)
,

and none of the terms on the right side are zero because p ≥ 7 by assumption. Let’s compute
each term:

(2

p

)
= (−1)

p2−1
8 = 1,

since p ≡ 7 (mod 40) implies p ≡ 7 (mod 8). Also(5

p

)
=

(p

5

)
=

(2

5

)
= −1.

Here the first equality follows from quadratic reciprocity, the second from p ≡ 7 (mod 40)
⇒ p ≡ 2 (mod 5). This shows that 10 is a quadradic non-residue (mod p).

Next we show that 10 is a primitive root (mod p), or equivalently, 10 has order p − 1.
By assumption p − 1 = 2q, so 10 has either order 2, q or p − 1. But q cannot be the order
of 10: since 10 is a nonresidue and q is odd 10q is a nonresidue; in particular, 10q 6≡ 1 (mod
p). Also, if 2 were the order of 10, i.e. 102 = 100 ≡ 1 (mod p), then 99 ≡ 3 · 3 · 11 ≡ 0 (mod
p); this implies p = 3 or 11, but neither of them are 7 (mod 40), so this is impossible either.
Therefore, the order of 10 (mod p) is p− 1.

2. First suppose n is odd, and write n = p1p2 . . . pk where pi are odd primes. Our goal is
to investigate for which primes p (n

p
) = 1.

Case p ≡ 1 (mod 4): By quadratic reciprocity, we have(p1 . . . pk

p

)
=

(p1

p

)
. . .

(pk

p

)
=

( p

p1

)
. . .

( p

pk

)
.

This value is 1 if and only if ( p
pi

) = −1 for an even number of i’s. And this holds if and only

if for each i = 1, . . . , k we have p ≡ ai (mod pi), where ai is never zero (mod pi) and is a
quadratic nonresidue (mod pi) for an even number of i’s. For each possible choice of ai’s,
together with the relation p ≡ 1 (mod 4), the Chinese remainder theorem gives the unique
residue class mod 4p1 . . . pk = 4n to which p belongs.
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Case p ≡ 3 (mod 4): here the quadratic reciprocity gives(p1 . . . pk

p

)
=

(p1

p

)
. . .

(pk

p

)
= (−1)β

( p

p1

)
. . .

( p

pk

)
(here β equals the number of pi’s that are 3 mod 4). This is 1 if and only if ( p

pi
) = −1 for

an even number of pi’s if β is even, and for an odd number of pi’s if β is odd. And this
happens if and only if for each i = 1, . . . , k, p ≡ bi (mod pi), where bi is never zero (mod
pi) and is a quadratic nonresidue (mod pi) for an even (in case β is even) or odd (in case
β is odd) number of i’s. Same as earlier, for each possible choice of bi’s, together with the
relation p ≡ 3 (mod 4), the Chinese remainder theorem determines the residue class mod 4n
corresponding to p.

If n is even, so that n = 2p1 . . . pk where pi are odd primes, then we proceed the same
as above (we also have to divide by the cases as to whether p ≡ 1 or 3 (mod 4)), except
that we will now have (2

p
) = (−1)(p2−1)/8 among the factors of (n

p
). This gives an equivalence

relation p ≡ c0 (mod 8) for some c0, in addition to p ≡ ci (mod pi) that we will obtain by
the same method as above. Then the Chinese remainder theorem gives the corresponding
residue class of p mod 8p1 . . . pk = 4n.

3. (i) Pick a primitive element g (mod p). By assumption g2d+1 has order p − 1 for all
d = 0, 1, 2, . . .. This means (2d + 1, p − 1) = 1 for all d, because if this does not hold for
some d then g2d+1 will have order at most (p − 1)/(2d + 1, p − 1) < p − 1, a contradiction.
Therefore p− 1 is a power of 2.

(ii) Suppose p = 2k + 1 is prime. We want to show that k has no odd factors. Recall the
following factorization formula:

am + 1 = (a + 1)(am−1 − am−2 + . . .− a + 1)

where m is an odd number. Now suppose k has an odd factor, i.e. k = m2n for an odd m.
Then

2k + 1 = (22n

)m + 1 = (22n

+ 1)(. . .).

Comparing both sides makes it clear that the number in (. . .) is strictly greater than 1. This
shows that 2k + 1 is composite, a contradiction.

(iii) Pick a primitive element g (mod p). Then for any d = 0, 1, 2, . . ., g(2d+1)r = 1 implies
p − 1 | (2d + 1)r But p − 1 = 22n

, so this means p − 1 | r. This shows that g2d+1 has order
p− 1, completing the proof.

4. Suppose A2 = 2. Write A =
∑∞

i=0 ai7
i, where ai is between 0 and 6 inclusive. Note
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that no matter what the ai’s are, we don’t need to worry about A being divergent, because
its Nth partial sum

∑N
i=0 ai7

i is a Cauchy sequence in the p-adic norm.

We have A2 ≡ 2 (mod 7) ⇒ a2
0 ≡ 2 (mod 7). So we could say a0 = 3. (Or we could also

say a0 = 4, which will give the “negative square root.”)

We also have A2 ≡ 2 (mod 49) ⇒ (a0 + a17)2 ≡ 2 (mod 49). Then a1 = 1 is the only
possibility (recall Exercise 3 from the previous problem set).

Similarly, A2 ≡ 2 (mod 73 = 343) ⇒ (a0 + a17 + a27
2)2 ≡ 2 (mod 343). a2 = 2 is forced.

We can continue this process to obtain a3, a4, . . . and so on. In general, we will have
(
∑N

i=0 ai7
i)2 ≡ 2 (mod 7N+1). This means that |(

∑N
i=0 ai7

i)2 − 2|p ≤ p−(N+1), which ap-
proaches 0 as N →∞. So we see that this process will indeed give a square root of 2.

5. D := {x ∈ Q : |x|p < 1} is a p-adic disc with radius 1 and center 0. Note that
x ∈ D ⇔ x = pkm, where k ≥ 1 and |m|p = 1.

A p-adic disc with radius 1 and center pαn, where α ≥ 1 and |n|p = 1 is

D′ = {x ∈ Q : |x− pαn|p < 1}.

And we have x ∈ D′ ⇔ x− pαn = pkm, where k ≥ 1 and |m|p = 1.

The question is asking us to show D = D′. This is clear because x ∈ D ⇔ x = pkm ⇔
x− pαn = pkm− pαn = pmin(k,α)l ⇔ x ∈ D′, where l here is whatever expression that makes
the equality hold.

6. (a) x2 + 10x− 10 ≡ 0 ⇔ (x + 5)2 ≡ 35 (mod p). If 35 is a quadratic residue (mod p),
i.e. if 35 = g2k for some primitive element g, then we have two distinct roots x ≡ −5 ± gk

(mod p).

In addition, if this equation has any solution other than x ≡ −5, it means 35 is a
quadratic residue (mod p). Therefore n = 35.

(b) Our goal is to find odd p’s such that (35
p
) = 1. First suppose p ≡ 1 (mod 4). Then

by quadratic reciprocity (35

p

)
=

(7

p

)(5

p

)
=

(p

7

)(p

5

)
.

This equals 1 if and only if p is a quadratic residue mod 5 and 7, or p is a quadratic nonresidue
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mod 5 and 7. Therefore either p ≡ 1, 4 (mod 5) and p ≡ 1, 2, 4 (mod 7), or p ≡ 2, 3 (mod 5)
and p ≡ 3, 5, 6 (mod 7).

On the other hand, if p ≡ 3 (mod 4), then(35

p

)
=

(7

p

)(5

p

)
= −

(p

7

)(p

5

)
.

This equals 1 if and only if p is a residue mod 5 and nonresidue mod 7, or p is a nonresidue
mod 5 and residue mod 7. Therefore either p ≡ 1, 4 (mod 5) and p ≡ 3, 5, 6 (mod 7), or
p ≡ 2, 3 (mod 5) and p ≡ 1, 2, 4 (mod 7).
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