
MATH 152 Problem set 3 solutions

As usual, p denotes a prime number.

1. Since g is a primitive root mod p, as i runs through 1, 2, . . . , p−1, gi takes each value
1, 2, . . . , p−1 exactly once, possibly in a different order. This gives (p−1)! ≡ g ·g2 · . . . ·gp−1

(mod p). Also, by the identity 1+2+. . .+p−1 = p(p−1)/2, we have g ·g2 ·. . .·gp−1 ≡ gp(p−1)/2

(mod p).

Wilson’s theorem follows if we show that gp(p−1)/2 ≡ −1 (mod p). When p = 2, this is
trivial. When p is odd, gp(p−1)/2 ≡ g(p−1)/2, and it follows that this equals -1, since it squares
to 1 and there are only two numbers mod p that squares to 1 (because x2 − 1 ≡ 0 (mod p)
has at most two solutions, no other numbers than 1 and -1 square to 1).

2. If k = 1 the result is trivial so assume k ≥ 2.

(a, ak − 1) = 1, so a is contained in the reduced residue class (mod ak − 1). (For those of
you who have group theory background, a ∈ (Z/(ak−1)Z)∗.) Obviously ak−1 ≡ 0 ⇒ ak ≡ 1
(mod ak − 1), so the order of a divides k. However, any smaller power of a is strictly smaller
than ak − 1 and hence cannot be 1 mod ak − 1. Therefore the order of a is precisely k. By
Lagrange’s theorem, k | φ(ak − 1).

3. First suppose that (p − 1) | k i.e. k = c(p − 1) for some integer c. Then for every
nonzero n ∈ Z/pZ we have nk ≡ nc(p−1) ≡ 1 (mod p) by Fermat’s little theorem. Therefore∑p−1

n=1 nk ≡ −1 (mod p).

Next suppose (p− 1) - k. Recall that there exists a primitive root g mod p, and that as
i runs through 1, 2, . . . , p − 1, gi assumes each of 1, 2, . . . , p − 1 exactly once. Therefore∑p−1

n=1 nk ≡ gk+g2k+. . .+g(p−1)k (mod p). Note that (gk+g2k+. . .+g(p−1)k)(1−gk) ≡ 0 (mod
p). But then 1−gk 6≡ 0 (mod p) by our assumption on k. Therefore gk+g2k+. . .+g(p−1)k ≡ 0
(mod p).

4. The idea is to consider the Taylor expansion of f(x) around x = a:

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)(x− a)2/2! + . . . + f (d)(a)(x− a)d/d!.

In each of the sub-problems, our goal is to find 0 ≤ t < p such that

f(a + tp) = f(a) + f ′(a)tp + f ′′(a)t2p2/2! + . . . + f (d)(a)tdpd/d!
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is an integer multiple of p2. (We’re restricting the possible value of t here because a+ tp and
a + (t + Cp)p = a + tp + Cp2 are considered the same mod p2.

As a lemma, we claim that for n ≥ 2, f (n)(a)/n! is an integer. Write f(x) = xd +
cd−1x

d−1 + . . . + c1x + c0. Then

f (n)(x) = d(d− 1) . . . (d− n + 1)xd−n + cd−1(d− 1) . . . (d− 1− n + 1)xd−1−n
+ . . . + cnn!,

and n! divides all the coefficients of f (n)(x) since n! divides any product of n consecutive
integers. Therefore our lemma is established, which immediately implies

f(a + tp) ≡ f(a) + f ′(a)tp (mod p2).

We use this identity to solve the problem. We already have that f(a) ≡ 0 (mod p), i.e.
f(a) = Cp for some integer C.

(i) If f ′(a) 6≡ 0 (mod p): then f(a) + f ′(a)tp = p(C + f ′(a)t), and since f ′(a) is not a
multiple of p, we can find exactly one t ∈ {0, 1, . . . , p− 1} such that C + f ′(a)t is a multiple
of p. For this t we have f(a + tp) ≡ 0 (mod p2).

(ii) If f ′(a) ≡ 0 (mod p) and f(a) 6≡ 0 (mod p2): then f(a)+f ′(a)tp 6≡ 0 (mod p2) for any
t, because by our assumptions f ′(a)tp is divisible by p2 but f(a) is not. Hence no solutions.

(iii) If f ′(a) ≡ 0 (mod p) and f(a) ≡ 0 (mod p2): then f(a)+f ′(a)tp ≡ 0 (mod p2) for all
t ∈ {0, 1, . . . , p−1}. Therefore a, a+p, . . . , a+(p−1)p are all solutions to f(x) ≡ 0 (mod p2).

5. To prove the first statement, use induction on k.

Case k = 0: 52k
= 5 ≡ 1 (mod 2k+2 = 4), and 5 6≡ 1 (mod 2k+3 = 8) are all easily verified.

General case: assume the truth of the statement for k− 1. We have 52k−1
= 1 + C · 2k+1,

2 - C. Therefore 52k
= (52k−1

)2 = 1 + C · 2k+2 + C2 · 22k+2. Clearly this is congruent to 1
mod 2k+2, but not to 1 mod 2k+3, since 2 - C (in fact, it is 1 + 2k+2 mod 2k+3).

Next, the order of 5 (mod 2α): by the above result, we know that 52α−2 ≡ 1 (mod 2α). So
the order of 5 divides 2α−2. But it does not divide 2α−3 since 52α−3 6≡ 1 (mod 2α). Therefore
the order of 5 is precisely 2α−2.

For the final part: there are φ(2α) = 2α−1 reduced residue classes mod 2α. The powers
of 5 already accounts for 2α−2 of them. To show that -1 and 5 generate all of the reduced
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residue classes—in the language of group theory, (Z/2αZ)∗—it suffices to show that -1 is
not a power of 5. This is trivial when α = 2, so assume α ≥ 3 (so as to avoid some tricky
computational issues below).

Suppose by contradiction that −1 ≡ 5d (mod 2α) for some d < 2α−2. Then 1 ≡ 52d (mod
2α), so 2α−2 | 2d ⇒ 2α−3 | d. This forces d = 2α−3.

Recall that 5d = 52α−3 ≡ 1 (mod 2α−1) by what we proved above. Therefore

5d = −1 + A · 2α = 1 + B · 2α−1

for some integers A, B. But then this implies −1 ≡ 1 (mod 2α−1), which is impossible since
α ≥ 3. This proves that -1 is not a power of 5.

6. We will verify that the (least) period l = p(p− 1). (This conjecture is not totally out
of the blue. One experiments on many values of n to see what nn looks like, and finds that
there’s something special about the behavior p and p− 1 with respect to the sequence nn.)

First we show (n + l)n+l ≡ nn (mod p) for all n: (n + l)n+l ≡ (n + p(p − 1))n+p(p−1) ≡
nn+p(p−1) ≡ nnnp(p−1) ≡ nn (mod p).

Next suppose l′ is any number satisfying (n + l′)n+l′ ≡ nn (mod p) for any n. We will
show that p | l′ and p − 1 | l′, thereby showing l = p(p − 1) is indeed the least value of l′

satisfying the condition. For the former, let n = 0; then we have l′l
′ ≡ 0 (mod p). Therefore

p | l′, and we can write l′ = pr for some r.1 For the latter, note that our assumption on l′

implies that, for all n, (n + l′)n+l′ ≡ (n + pr)n+pr ≡ nnnr ≡ nn (mod p). This implies that
nr ≡ 1 (mod p) for every nonzero n. Exercise 3 in this problem set shows that this cannot
be true unless p− 1 | r. This completes the proof.

1If you insist that n has to start from 1, take n = p and we will have the same conclusion.
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