MATH 152 Problem set 3 solutions

As usual, p denotes a prime number.

1. Since g is a primitive root $\bmod p$, as i runs through $1,2, \ldots, p-1, g^{i}$ takes each value $1,2, \ldots, p-1$ exactly once, possibly in a different order. This gives $(p-1)!\equiv g \cdot g^{2} \cdot \ldots \cdot g^{p-1}$ $(\bmod p)$. Also, by the identity $1+2+\ldots+p-1=p(p-1) / 2$, we have $g \cdot g^{2} \cdot \ldots \cdot g^{p-1} \equiv g^{p(p-1) / 2}$ $(\bmod p)$.

Wilson's theorem follows if we show that $g^{p(p-1) / 2} \equiv-1(\bmod p)$. When $p=2$, this is trivial. When p is odd, $g^{p(p-1) / 2} \equiv g^{(p-1) / 2}$, and it follows that this equals -1 , since it squares to 1 and there are only two numbers $\bmod p$ that squares to $1\left(\right.$ because $x^{2}-1 \equiv 0(\bmod p)$ has at most two solutions, no other numbers than 1 and -1 square to 1).
2. If $k=1$ the result is trivial so assume $k \geq 2$.
$\left(a, a^{k}-1\right)=1$, so a is contained in the reduced residue class $\left(\bmod a^{k}-1\right)$. (For those of you who have group theory background, $a \in\left(\mathbb{Z} /\left(a^{k}-1\right) \mathbb{Z}\right)^{*}$.) Obviously $a^{k}-1 \equiv 0 \Rightarrow a^{k} \equiv 1$ $\left(\bmod a^{k}-1\right)$, so the order of a divides k. However, any smaller power of a is strictly smaller than $a^{k}-1$ and hence cannot be $1 \bmod a^{k}-1$. Therefore the order of a is precisely k. By Lagrange's theorem, $k \mid \phi\left(a^{k}-1\right)$.
3. First suppose that $(p-1) \mid k$ i.e. $k=c(p-1)$ for some integer c. Then for every nonzero $n \in \mathbb{Z} / p \mathbb{Z}$ we have $n^{k} \equiv n^{c(p-1)} \equiv 1(\bmod p)$ by Fermat's little theorem. Therefore $\sum_{n=1}^{p-1} n^{k} \equiv-1(\bmod p)$.

Next suppose $(p-1) \nmid k$. Recall that there exists a primitive root $g \bmod p$, and that as i runs through $1,2, \ldots, p-1, g^{i}$ assumes each of $1,2, \ldots, p-1$ exactly once. Therefore $\sum_{n=1}^{p-1} n^{k} \equiv g^{k}+g^{2 k}+\ldots+g^{(p-1) k}(\bmod p)$. Note that $\left(g^{k}+g^{2 k}+\ldots+g^{(p-1) k}\right)\left(1-g^{k}\right) \equiv 0(\bmod$ $p)$. But then $1-g^{k} \not \equiv 0(\bmod p)$ by our assumption on k. Therefore $g^{k}+g^{2 k}+\ldots+g^{(p-1) k} \equiv 0$ $(\bmod p)$.
4. The idea is to consider the Taylor expansion of $f(x)$ around $x=a$:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a)(x-a)^{2} / 2!+\ldots+f^{(d)}(a)(x-a)^{d} / d!.
$$

In each of the sub-problems, our goal is to find $0 \leq t<p$ such that

$$
f(a+t p)=f(a)+f^{\prime}(a) t p+f^{\prime \prime}(a) t^{2} p^{2} / 2!+\ldots+f^{(d)}(a) t^{d} p^{d} / d!
$$

is an integer multiple of p^{2}. (We're restricting the possible value of t here because $a+t p$ and $a+(t+C p) p=a+t p+C p^{2}$ are considered the same $\bmod p^{2}$.

As a lemma, we claim that for $n \geq 2, f^{(n)}(a) / n$! is an integer. Write $f(x)=x^{d}+$ $c_{d-1} x^{d-1}+\ldots+c_{1} x+c_{0}$. Then

$$
f^{(n)}(x)=d(d-1) \ldots(d-n+1) x^{d-n}+c_{d-1}(d-1) \ldots(d-1-n+1) x_{+}^{d-1-n} \ldots+c_{n} n!
$$

and n ! divides all the coefficients of $f^{(n)}(x)$ since n ! divides any product of n consecutive integers. Therefore our lemma is established, which immediately implies

$$
f(a+t p) \equiv f(a)+f^{\prime}(a) t p\left(\bmod p^{2}\right) .
$$

We use this identity to solve the problem. We already have that $f(a) \equiv 0(\bmod p)$, i.e. $f(a)=C p$ for some integer C.
(i) If $f^{\prime}(a) \not \equiv 0(\bmod p)$: then $f(a)+f^{\prime}(a) t p=p\left(C+f^{\prime}(a) t\right)$, and since $f^{\prime}(a)$ is not a multiple of p, we can find exactly one $t \in\{0,1, \ldots, p-1\}$ such that $C+f^{\prime}(a) t$ is a multiple of p. For this t we have $f(a+t p) \equiv 0\left(\bmod p^{2}\right)$.
(ii) If $f^{\prime}(a) \equiv 0(\bmod p)$ and $f(a) \not \equiv 0\left(\bmod p^{2}\right)$: then $f(a)+f^{\prime}(a) t p \not \equiv 0\left(\bmod p^{2}\right)$ for any t, because by our assumptions $f^{\prime}(a) t p$ is divisible by p^{2} but $f(a)$ is not. Hence no solutions.
(iii) If $f^{\prime}(a) \equiv 0(\bmod p)$ and $f(a) \equiv 0\left(\bmod p^{2}\right)$: then $f(a)+f^{\prime}(a) t p \equiv 0\left(\bmod p^{2}\right)$ for all $t \in\{0,1, \ldots, p-1\}$. Therefore $a, a+p, \ldots, a+(p-1) p$ are all solutions to $f(x) \equiv 0\left(\bmod p^{2}\right)$.
5. To prove the first statement, use induction on k.

Case $k=0: 5^{2^{k}}=5 \equiv 1\left(\bmod 2^{k+2}=4\right)$, and $5 \not \equiv 1\left(\bmod 2^{k+3}=8\right)$ are all easily verified.

General case: assume the truth of the statement for $k-1$. We have $5^{2^{k-1}}=1+C \cdot 2^{k+1}$, $2 \nmid C$. Therefore $5^{2^{k}}=\left(5^{2^{k-1}}\right)^{2}=1+C \cdot 2^{k+2}+C^{2} \cdot 2^{2 k+2}$. Clearly this is congruent to 1 $\bmod 2^{k+2}$, but not to $1 \bmod 2^{k+3}$, since $2 \nmid C\left(\right.$ in fact, it is $\left.1+2^{k+2} \bmod 2^{k+3}\right)$.

Next, the order of $5\left(\bmod 2^{\alpha}\right)$: by the above result, we know that $5^{2^{\alpha-2}} \equiv 1\left(\bmod 2^{\alpha}\right)$. So the order of 5 divides $2^{\alpha-2}$. But it does not divide $2^{\alpha-3}$ since $5^{2^{\alpha-3}} \not \equiv 1\left(\bmod 2^{\alpha}\right)$. Therefore the order of 5 is precisely $2^{\alpha-2}$.

For the final part: there are $\phi\left(2^{\alpha}\right)=2^{\alpha-1}$ reduced residue classes mod 2^{α}. The powers of 5 already accounts for $2^{\alpha-2}$ of them. To show that -1 and 5 generate all of the reduced
residue classes - in the language of group theory, $\left(\mathbb{Z} / 2^{\alpha} \mathbb{Z}\right)^{*}$-it suffices to show that -1 is not a power of 5 . This is trivial when $\alpha=2$, so assume $\alpha \geq 3$ (so as to avoid some tricky computational issues below).

Suppose by contradiction that $-1 \equiv 5^{d}\left(\bmod 2^{\alpha}\right)$ for some $d<2^{\alpha-2}$. Then $1 \equiv 5^{2 d}(\bmod$ 2^{α}), so $2^{\alpha-2}\left|2 d \Rightarrow 2^{\alpha-3}\right| d$. This forces $d=2^{\alpha-3}$.

Recall that $5^{d}=5^{2^{\alpha-3}} \equiv 1\left(\bmod 2^{\alpha-1}\right)$ by what we proved above. Therefore

$$
5^{d}=-1+A \cdot 2^{\alpha}=1+B \cdot 2^{\alpha-1}
$$

for some integers A, B. But then this implies $-1 \equiv 1\left(\bmod 2^{\alpha-1}\right)$, which is impossible since $\alpha \geq 3$. This proves that -1 is not a power of 5 .
6. We will verify that the (least) period $l=p(p-1)$. (This conjecture is not totally out of the blue. One experiments on many values of n to see what n^{n} looks like, and finds that there's something special about the behavior p and $p-1$ with respect to the sequence n^{n}.)

First we show $(n+l)^{n+l} \equiv n^{n}(\bmod p)$ for all $n:(n+l)^{n+l} \equiv(n+p(p-1))^{n+p(p-1)} \equiv$ $n^{n+p(p-1)} \equiv n^{n} n^{p(p-1)} \equiv n^{n}(\bmod p)$.

Next suppose l^{\prime} is any number satisfying $\left(n+l^{\prime}\right)^{n+l^{\prime}} \equiv n^{n}(\bmod p)$ for any n. We will show that $p \mid l^{\prime}$ and $p-1 \mid l^{\prime}$, thereby showing $l=p(p-1)$ is indeed the least value of l^{\prime} satisfying the condition. For the former, let $n=0$; then we have $l^{l^{\prime}} \equiv 0(\bmod p)$. Therefore $p \mid l^{\prime}$, and we can write $l^{\prime}=p r$ for some $r .{ }^{1}$ For the latter, note that our assumption on l^{\prime} implies that, for all $n,\left(n+l^{\prime}\right)^{n+l^{\prime}} \equiv(n+p r)^{n+p r} \equiv n^{n} n^{r} \equiv n^{n}(\bmod p)$. This implies that $n^{r} \equiv 1(\bmod p)$ for every nonzero n. Exercise 3 in this problem set shows that this cannot be true unless $p-1 \mid r$. This completes the proof.

[^0]
[^0]: ${ }^{1}$ If you insist that n has to start from 1 , take $n=p$ and we will have the same conclusion.

