MATH 152 Problem set 3 solutions
As usual, p denotes a prime number.

1. Since ¢ is a primitive root mod p, as i runs through 1, 2, ..., p—1, ¢° takes each value
1,2, ..., p—1exactly once, possibly in a different order. This gives (p—1)! = g-¢*-... g’}
(mod p). Also, by the identity 1+2+...+p—1 = p(p—1)/2, we have g-g2-...-g?~! = gP(P~1/2
(mod p).

Wilson’s theorem follows if we show that g?®~1/2 = —1 (mod p). When p = 2, this is
trivial. When p is odd, ¢g?®~1/2 = ¢®=1/2 and it follows that this equals -1, since it squares
to 1 and there are only two numbers mod p that squares to 1 (because 22 — 1 = 0 (mod p)
has at most two solutions, no other numbers than 1 and -1 square to 1).

2. If k =1 the result is trivial so assume k > 2.

(a,a® —1) =1, so a is contained in the reduced residue class (mod a* —1). (For those of
you who have group theory background, a € (Z/(a*—1)Z)*.) Obviously a*—1 =0 = a* =
(mod a* — 1), so the order of a divides k. However, any smaller power of a is strictly smaller
than a* — 1 and hence cannot be 1 mod a* — 1. Therefore the order of a is precisely k. By
Lagrange’s theorem, k | ¢(a* — 1).

3. First suppose that (p — 1) | k i.e. k = ¢(p — 1) for some integer c¢. Then for every
nonzero n € Z/pZ we have n* = n°»=Y =1 (mod p) by Fermat’s little theorem. Therefore

Sl nk = —1 (mod p).

Next suppose (p — 1) t k. Recall that there exists a primitive root ¢ mod p, and that as

7 runs through 1, 2, ..., p — 1, ¢* assumes each of 1, 2, ..., p — 1 exactly once. Therefore
Pk = gbpg? . 4Dk (mod p). Note that (g"4g%*+...+¢#V*)(1—g*) = 0 (mod

p). But then 1—g* # 0 (mod p) by our assumption on k. Therefore g+ g2 +.. . +gP~VF =0
(mod p).

4. The idea is to consider the Taylor expansion of f(z) around =z = a:
f(@) = fla)+ f'(a)(x —a) + f"(a)(z — a)?/2' + ... + fD(a)(z — a)?/d.
In each of the sub-problems, our goal is to find 0 < ¢ < p such that
fla+tp) = fla) + f'(a)tp + f'(a)t*p?* /2! + ... + fD(a)t?p?/d!
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is an integer multiple of p?. (We're restricting the possible value of ¢ here because a + tp and
a+ (t+ Cp)p = a+ tp + Cp?* are considered the same mod p?.

As a lemma, we claim that for n > 2, f™(a)/n! is an integer. Write f(z) = 2¢ +
ca12% 4+ ...+ c1x + ¢o. Then

fO () =dd—1)...(d—n+1)2? " +cg1(d—1)...(d—1—n+1)z4 " +conl,

and n! divides all the coefficients of f () since n! divides any product of n consecutive
integers. Therefore our lemma is established, which immediately implies

fla+tp) = fa)+ f'(a)tp (mod p?).

We use this identity to solve the problem. We already have that f(a) = 0 (mod p), i.e.
f(a) = Cp for some integer C.

(i) If f'(a) #Z 0 (mod p): then f(a) + f'(a)tp = p(C + f'(a)t), and since f'(a) is not a
multiple of p, we can find exactly one t € {0,1,...,p— 1} such that C'+ f’(a)t is a multiple
of p. For this t we have f(a + tp) =0 (mod p?).

(i) If f'(a) = 0 (mod p) and f(a) # 0 (mod p?): then f(a)+ f'(a)tp # 0 (mod p?) for any
t, because by our assumptions f’(a)tp is divisible by p? but f(a) is not. Hence no solutions.

(iii) If f/(a) =0 (mod p) and f(a) = 0 (mod p?): then f(a)+ f'(a)tp = 0 (mod p?) for all
t €{0,1,...,p—1}. Therefore a,a+p,...,a+(p—1)p are all solutions to f(z) = 0 (mod p?).

5. To prove the first statement, use induction on k.
Case k = 0: 52" =5 =1 (mod 2¥*2 = 4), and 5 # 1 (mod 23 = 8) are all easily verified.

General case: assume the truth of the statement for k — 1. We have 52 = 14 (' - 2k+1,
2+ C. Therefore 52" = (52 )2 = 1 + C - 282 4 02 . 22542 (Clearly this is congruent to 1
mod 282, but not to 1 mod 2¥*3, since 21 C (in fact, it is 1 + 2572 mod 2++3).

Next, the order of 5 (mod 2%): by the above result, we know that 5>~ = 1 (mod 2). So
the order of 5 divides 2°~2. But it does not divide 2%~ since 52 ° # 1 (mod 2%). Therefore
the order of 5 is precisely 2%72.

For the final part: there are ¢(2%) = 27! reduced residue classes mod 2%. The powers
of 5 already accounts for 2472 of them. To show that -1 and 5 generate all of the reduced
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residue classes—in the language of group theory, (Z/2%7Z)*—it suffices to show that -1 is
not a power of 5. This is trivial when o = 2, so assume « > 3 (so as to avoid some tricky
computational issues below).

Suppose by contradiction that —1 = 5¢ (mod 2%) for some d < 2¢~2. Then 1 = 52 (mod
2%), 80 2972 | 2d = 2°73 | d. This forces d = 2°73.

Recall that 5% = 52" =1 (mod 2%71) by what we proved above. Therefore
5'=—-14A4-2=1+4+B-2*""

for some integers A, B. But then this implies —1 = 1 (mod 2%~1), which is impossible since
« > 3. This proves that -1 is not a power of 5.

6. We will verify that the (least) period I = p(p — 1). (This conjecture is not totally out
of the blue. One experiments on many values of n to see what n” looks like, and finds that
there’s something special about the behavior p and p — 1 with respect to the sequence n".)

First we show (n + l)”“ = n" (mod p) for all n: (n + l)nH = (n+plp - 1))n+p(p71) =
ntPP=1) = prppe—1) = p7 (mod p).

n+l' — . n

Next suppose !’ is any number satisfying (n + ) n" (mod p) for any n. We will
show that p | I" and p — 1 | I, thereby showing [ = p(p — 1) is indeed the least value of I’
satisfying the condition. For the former, let n = 0; then we have I’ = 0 (mod p). Therefore
p | I', and we can write I’ = pr for some r.! For the latter, note that our assumption on '
implies that, for all n, (n + I')"*" = (n + pr)"**" = n"n" = n™ (mod p). This implies that
n” = 1 (mod p) for every nonzero n. Exercise 3 in this problem set shows that this cannot
be true unless p — 1 | . This completes the proof.

'Tf you insist that n has to start from 1, take n = p and we will have the same conclusion.



