
MATH 152 Problem set 2 solutions

p or pi denotes a prime number.

1. Let l be the order of 10 in Z/pZ. (Such l exists because (10, p) = 1 by assumption.)
Then 10l ≡ 1 (mod p), and

10l = 1 + cp for some c < 10l

⇒ p =
10l − 1

c

⇒ 1

p
= c · 1

10l − 1
=

c

10l
· 1

1− 10l

⇒ 1

p
=

c

10l

(
1 +

1

10l
+

1

102l
+ . . .

)
⇒ 1

p
=

c

10l
+

c

102l
+

c

103l
. . .

Since c < 10l, c has no more than l digits. Write c in the decimal expansion c =∑l−1
i=0 ci10i, where 0 ≤ ci ≤ 9. Substituting this to the last equality above, we have

1

p
=

cl
101

+
cl−1

102
+ . . .+

c0
10l

+
cl

10l+1
+ . . .+

c0
102l

+
cl

102l+1
+ . . .+

c0
103l

+ . . .

2. (a) dN =
∏

pi prime p
αi
i , where αi = max{α : pαi | n, 1 ≤ n ≤ N} = max{α : pαi ≤ N} =

b logN
log p
c. Therefore, taking logarithms, we obtain

log dN =
∑
p≤N

log p
⌊ logN

log p

⌋
.

Since b logN
log p
c ≤ logN

log p
, the right-hand side is less than or equal to∑

p≤N

log p
logN

log p
=
∑
p≤N

logN = (logN)π(N),

as desired.

(b) First let’s compute the integral:

dN

∫ 1

0

f(x)dx =
[
dNa0x+ dN

a1

2
x2 + . . .+ dN

aN−1

N
xN
]1

0
.
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Note that n | dN for all 1 ≤ n ≤ N . Therefore the right-hand side is an integer.

(c) Because of (b), all we need to show is that the integral is strictly positive, that is,
strictly greater than zero. This is easily seen to be true because f(x) > 0 for all x ∈ (0, 1).

(d) fN is nonnegative and bounded by 4−N on [0, 1]. Therefore
∫ 1

0
fN(x)dx ≤ 4−N .

Next, by (c) we have 4N ≤ d2N+14
N
∫ 1

0
fdx ≤ d2N+1. Apply log on both ends, and use

(a) to conclude
2N log 2 ≤ log(2N + 1) · π(2N + 1).

3. Fix x = pα1
1 · . . . · pαr

r , where the pi’s are pairwise distinct. Recall that

φ(x) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 . . . (pr − 1)pαr−1
r .

From this formula it follows that φ(x) ≥ pi − 1 for all i. Therefore, no prime greater
than φ(x) + 1 can divide x. Indeed, no prime power greater than 2φ(x) can divide x, as
2φ(x) ≥ 2(pi − 1)pαi−1

i ≥ pαi
i for all i. Therefore if φ(x) = n for a fixed n, then there are

only finitely prime powers that could possibly divide x. This shows that the number of x
that satisfies φ(x) = n is finite.

Next, we are asked to list all x with φ(x) = 100. In doing this, it is much easier to
consider the divisors of n (which we know well) than the possible divisors of x (which are
prime powers less than or equal to 200, which are too numerous and irregular) like we did
earlier. So we start by finding the prime powers whose value under φ is a divisor of 100. The
divisors of 100 are 1, 2, 4, 5, 10, 20, 25, 50, 100, and

φ(pα) = (p− 1)(pα−1) = 1 has one solution (p, α) = (2, 1).

(p− 1)(pα−1) = 2 has solutions (2, 2) and (3, 1).

(p− 1)(pα−1) = 4 has solutions (2, 3) and (5, 1).

(p− 1)(pα−1) = 5 has no solutions.

(p− 1)(pα−1) = 10 has a solution (11, 1).

(p− 1)(pα−1) = 20 has a solution (5, 2).

(p− 1)(pα−1) = 25 has no solutions.

(p− 1)(pα−1) = 50 has no solutions.
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(p− 1)(pα−1) = 100 has solutions (5, 3) and (101, 1).

Given this list, it is easy to see that the solutions to φ(x) = 100 are precisely 101,
53 = 125, 2 · 101 = 202, and 2 · 53 = 250.

4. First of all, note that 1 + 2 + 3 + . . .+ (p− 1) = p(p− 1)/2 by the summation formula.
Wilson’s theorem implies that (p− 1)! = (p− 1) + Cp for some C ∈ N. From this equation
we see that p − 1 | C. Since (p − 1)p is always even, we may write Cp = C ′p(p − 1)/2 for
some C ∈ N. Therefore,

(p− 1)! = (p− 1) + C ′ · p(p− 1)

2
.

This completes the proof.

Alternative proof: This time we use the Chinese remainder theorem. (p − 1)! ≡ p −
1 (mod p) by Wilson’s theorem and (p− 1)! ≡ 0 (mod (p− 1)/2). Since p and (p− 1)/2 are
coprime, there exists a unique number between 1 and p(p− 1)/2 that is p− 1 mod p and 0
mod (p− 1)/2, namely p− 1. Therefore (p− 1)! ≡ p− 1 (mod p(p− 1)/2).

5. (1 + a + a2 + . . . + ap−2)(a− 1) = ap−1 − 1. By Fermat’s little theorem, p | ap−1 − 1.
But since p - a− 1 by assumption, p | 1 + a+ a2 + . . .+ ap−2.

6. Write f(x) = anx
n + . . . + a1x + a0. Then for any t ∈ Z, f(x + tm) = an(x +

tm)n + . . . + a1(x + tm) + a0. By the binomial theorem, for any nonnegative integer d, we
have (x + tm)d = xd + C · m ≡ xd (mod m). (Of course here C is an integer.) Therefore
f(x) ≡ f(x+ tm) (mod m).

Suppose f(a) = p or −p. Then f(a) ≡ 0 (mod p), and by the above result, f(a+ tm) ≡
0 (mod p). So either f(a + tm) = ±p is prime or f(a + tm) is zero or composite. Now, if
f(x) were prime for every x ∈ Z, then either f(a + tm) − p or f(a + tm) + p has infinitely
many roots for t; i.e. f(x)− p = 0 or f(x) + p = 0 has infinitely many roots. But then it is
impossible for any nonconstant polynomial to have infinitely many roots.
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