MATH 152: PROBLEM SET 9

Due December 1

1. (a) Let q be a natural number and let c_{1}, \ldots, c_{q} be arbitrary complex numbers. Prove that

$$
\sum_{\chi(\bmod q)}\left|\sum_{n=1}^{q} c_{n} \chi(n)\right|^{2}=\phi(q) \sum_{\substack{n=1 \\(n, q)=1}}^{q}\left|c_{n}\right|^{2}
$$

(b). Let q be a natural number and for each character $\chi(\bmod q)$ let c_{χ} be some complex number. Prove that

$$
\sum_{n=1}^{q}\left|\sum_{\chi(\bmod q)} c_{\chi} \chi(n)\right|^{2}=\phi(q) \sum_{\chi(\bmod q)}\left|c_{\chi}\right|^{2}
$$

2. Let $\chi(\bmod q)$ be a non-principal character. Prove that as $x \rightarrow \infty$

$$
\sum_{n \leq x} d(n) \chi(n)=O(\sqrt{x})
$$

where $d(n)=\sum_{d \mid n} 1$ counts the number of divisors of n.
3. Let p be an odd prime and in this problem χ will denote the Legendre symbol $(\bmod p)$.
(i). Prove that

$$
\frac{\zeta(4)}{\zeta(2)} \leq L(2, \chi) \leq \zeta(2)
$$

(ii). Given any $\epsilon>0$ prove that there are infinitely many primes p such that

$$
L(2, \chi) \geq \zeta(2)-\epsilon
$$

Prove also that there are infinitely many primes p such that

$$
L(2, \chi) \leq \frac{\zeta(4)}{\zeta(2)}+\epsilon
$$

4. (a) Given a natural number q prove that

$$
\sum_{\substack{n \leq x \\(n, q)=1}} 1=\frac{\phi(q)}{q} x+O(\phi(q))
$$

(b). We say that a set \mathcal{A} of natural numbers has density α if

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\{a \leq x: \quad a \in \mathcal{A}\}
$$

exists and equals α. Let \mathcal{B} denote the set of natural numbers n such that 2010 divides $\phi(n)$. Prove that \mathcal{B} has density 1 (or, equivalently that the set of natural numbers n such that $2010 \nmid \phi(n)$ has density zero).

