MATH 152: PROBLEM SET 8

Due November 17

1. Use partial summation to show that

$$
\sum_{n \leq N} \log n=N \log N-N+1+\int_{1}^{N} \frac{\{t\}}{t} d t
$$

Consider $F(x)=\int_{1}^{x}\{t\} d t$. What can you say about $F(x)$ for large x ? Use that information, and integration by parts to establish that

$$
\int_{1}^{N} \frac{\{t\}}{t} d t=\frac{1}{2} \log N+C_{0}+O\left(\frac{1}{N}\right)
$$

for some constant C_{0}. Conclude that $N!\sim C \sqrt{N}(N / e)^{N}$ for some constant $C>0$. (In fact, $C=\sqrt{2 \pi}$, and this is Stirling's formula for $N!$.)
2. Euler made his name by showing that $1 / 1+1 / 4+1 / 9+\ldots=\pi^{2} / 6$. Once he found the answer he was able to check it was right by computing the series accurately. If you just sum the series up to N terms, what would be the error from the true answer? Can you think of a better way to estimate/evaluate the tail

$$
\sum_{n=N+1}^{\infty} \frac{1}{n^{2}} ?
$$

This is a little vague: what I have in mind is that if you do the obvious estimation, then after summing the first 1000 terms you'd have an error of about 10^{-3}. After the refined estimation, you should have an error of about 10^{-6}.
3. Prove that for $s>1$

$$
\zeta(s)=\frac{s}{(s-1)}-s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} d t
$$

For what values of s does the integral above make sense? This can be used to make sense of $\zeta(s)$ for values of s other than $s>1$.
4. Let a_{n} be a sequence of complex numbers such that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} a_{n}=1
$$

Prove using partial summation, or otherwise, that

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{n \leq x} \frac{a_{n}}{n}=1
$$

Is the converse true? Prove or give a counterexample.
5. Prove that as $x \rightarrow \infty$

$$
\sum_{2 \leq n \leq x} \frac{1}{\log n}=\int_{2}^{x} \frac{d t}{\log t}+C+O\left(\frac{1}{\log x}\right)
$$

for some constant C.

