MATH 152: PROBLEM SET 7

Due November 10

1. Evaluate $L(1, \chi_8)$, $L(1, \chi_{-8})$ and $L(1, \chi_5)$.

2. In class we defined multiplicative or Dirichlet characters (mod q). In this problem you will find the analogous additive characters (mod q). These are functions $\psi : \mathbb{Z} \to \mathbb{C}$, not identically zero, such that ψ is periodic with period q (i.e. $\psi(n+q) = \psi(n)$) and also $\psi(m+n) = \psi(m)\psi(n)$. Describe all the additive characters (mod q). Formulate and prove the orthogonality relations for these additive characters.

3. Let $a(1), a(2), \ldots$ be a sequence of non-negative real numbers such that $\sum_{n=1}^{\infty} a(n)$ diverges. Suppose that the power series

$$f(z) = \sum_{n=1}^{\infty} a(n) z^n$$

converges for all complex numbers |z| < 1, and that

$$\lim_{r \to 1^-} f(re^{i\theta})$$

exists, and is finite, for every $0 < \theta < 2\pi$. Prove that for any progression a (mod q),

$$\sum_{\substack{n \equiv 1 \ (\text{mod } q)}}^{\infty} a(n)$$

diverges. Hint: Problem 1.

4. Let p be a prime and let χ be a non-principal Dirichlet character $(\mod p)$. Define the order of χ to be the least exponent ℓ such that $\chi^{\ell} = \chi_0$ where χ_0 is the principal character. If χ has order ℓ show that the values $\chi(n)$ for (n,q) = 1 are ℓ -th roots of unity. If g is a primitive root $(\mod p)$ then show that $\chi(g)$ is a primitive ℓ -th root of unity does it necessarily follow that n is a primitive root $(\mod p)$? (Recall that a primitive n-th root of unity is a number of the form $e^{2\pi i a/n}$ where (a, n) = 1.)

5. Let p be an odd prime. How many real (as opposed to complex) characters are there $(\mod p)$? How many real characters are there $(\mod p^{\alpha})$? How many real characters are there $(\mod 2^{\alpha})$? How many real characters are there $(\mod q)$ for a general composite number q?

Typeset by \mathcal{AMS} -T_EX