MATH 152: PROBLEM SET 6

Due November 3

1. Develop the arithmetic of the ring $\mathbb{Z}[\sqrt{-2}]=\{a+b \sqrt{-2}: \quad a, b \in \mathbb{Z}\}$. Show that there are division and Euclidean algorithms for this ring. What are the irreducibles and primes in this ring; are they the same? Explain why unique factorization holds.
2. Use your work in question 2 to describe what primes are of the form $x^{2}+2 y^{2}$. More generally, what numbers may be written as $x^{2}+2 y^{2}$?
3. In the spirit of Euclid, give elementary proofs that there are infinitely many primes $p \equiv 1(\bmod 3)$, and $p \equiv 2(\bmod 3)$.
4. Define the multiplicative function $\mu(n)$ (the Möbius function by setting $\mu(1)=$ $1, \mu(p)=-1$ (for primes p) and $\mu\left(p^{k}\right)=0$ for $k>1$. When does the series $\sum_{n=1}^{\infty} \mu(n) n^{-s}$ converge? Prove that in the range $s>1$ we have

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)}
$$

and that

$$
\sum_{n=1}^{\infty} \frac{\mu(n)^{2}}{n^{s}}=\frac{\zeta(s)}{\zeta(2 s)}
$$

5 . Let $d(n)$ denote the number of divisors d of n.
(i) Prove that $d(n)$ is a multiplicative function: that is $d(m n)=d(m) d(n)$ if m and n are coprime. Prove that $d\left(p^{a}\right)=a+1$ for any prime power p^{a}.
(ii) Prove that for any $\epsilon>0$ there exists a constant $C(\epsilon)$ such that

$$
d(n) \leq C(\epsilon) n^{\epsilon}
$$

for all n. Suggestion: if $n=\prod_{i} p_{i}^{a_{i}}$ then

$$
\frac{d(n)}{n^{\epsilon}}=\prod_{i} \frac{\left(a_{i}+1\right)}{p_{i}^{a_{i} \epsilon}}
$$

What can you say about the terms $\left(a_{i}+1\right) p_{i}^{-a_{i} \epsilon}$?
(iii) For what real numbers s does the series $\sum_{n=1}^{\infty} d(n) / n^{s}$ converge? In the range of convergence, can you identify this function with something in terms of the Riemann zeta function?

