MATH 152: PROBLEM SET 5

Due October 27

1. Divide the residue classes $1,2, \ldots, p-1(\bmod p)(p$ an odd prime) into two nonempty sets \mathcal{S}_{1} and \mathcal{S}_{2} such that the product of two residue classes from the same set is always in \mathcal{S}_{1}, while the product of an element from \mathcal{S}_{1} and an element from \mathcal{S}_{2} always lies in \mathcal{S}_{2}. Prove that \mathcal{S}_{1} is the set of quadratic residues, and \mathcal{S}_{2} the set of quadratic nonresidues.
2. Suppose $p \geq 7$ is prime. Show that there exists at least one number n in the interval $1 \leq n \leq 9$ such that $\left(\frac{n}{p}\right)=\left(\frac{n+1}{p}\right)=1$.
3. Let p be an odd prime and put $S(a, p)=\sum_{n=1}^{p}\left(\frac{n(n+a)}{p}\right)$. Prove that $S(0, p)=$ $p-1$ and that $\sum_{a=1}^{p} S(a, p)=0$.
4. Keep the notations of problem 3, and show that if $(a, p)=1$ then $S(a, p)=$ $S(1, p)$. (Hint: multiply $n(n+1)$ by a^{2}.) Using problem 3 , conclude that $S(a, p)=$ -1 if $(a, p)=1$.
5. Let p_{1}, \ldots, p_{r} be primes of the form $1(\bmod 4)$ and consider $\left(2 p_{1} \cdot p_{2} \cdot \ldots \cdot p_{r}\right)^{2}+$ 1. Using this observation and your knowledge of what numbers are sums of two squares, show why there are infinitely many primes $\equiv 1(\bmod 4)$.
6. In class we discussed Dirichlet's theorem which shows that for any irrational θ there are infinitely many rational approximations a / q with $(a, q)=1$ and $|\theta-a / q| \leq$ $1 / q^{2}$. In fact, this can be strengthened a little, and there exist infinitely many approximations with $|\theta-a / q| \leq 1 /\left(\sqrt{5} q^{2}\right)$. This exercise will show that Dirichlet's theorem cannot be strengthened any further.

Let c be any real number strictly below $1 / \sqrt{5}$. Let ϕ denote the Golden Ratio $(1+\sqrt{5}) / 2$ which is the positive solution to $(f(x)=) x^{2}-x-1=0$. Prove that there are only finitely many rational numbers a / q with $(a, q)=1$ that satisfy $|\phi-a / q| \leq c / q^{2}$.

Hint: What is a lower bound for $|f(a / q)|$? Then consider $|f(\phi)-f(a / q)| \ldots$

