MATH 152: PROBLEM SET 5

Due October 27

1. Divide the residue classes 1, 2, ..., $p-1 \pmod{p} (p \text{ an odd prime})$ into two nonempty sets S_1 and S_2 such that the product of two residue classes from the same set is always in S_1 , while the product of an element from S_1 and an element from S_2 always lies in S_2 . Prove that S_1 is the set of quadratic residues, and S_2 the set of quadratic nonresidues.

2. Suppose $p \ge 7$ is prime. Show that there exists at least one number n in the interval $1 \le n \le 9$ such that $\left(\frac{n}{p}\right) = \left(\frac{n+1}{p}\right) = 1$.

3. Let p be an odd prime and put $S(a,p) = \sum_{n=1}^{p} \left(\frac{n(n+a)}{p}\right)$. Prove that S(0,p) = p-1 and that $\sum_{a=1}^{p} S(a,p) = 0$.

4. Keep the notations of problem 3, and show that if (a, p) = 1 then S(a, p) = S(1, p). (Hint: multiply n(n+1) by a^2 .) Using problem 3, conclude that S(a, p) = -1 if (a, p) = 1.

5. Let p_1, \ldots, p_r be primes of the form 1 (mod 4) and consider $(2p_1 \cdot p_2 \cdot \ldots \cdot p_r)^2 + 1$. Using this observation and your knowledge of what numbers are sums of two squares, show why there are infinitely many primes $\equiv 1 \pmod{4}$.

6. In class we discussed Dirichlet's theorem which shows that for any irrational θ there are infinitely many rational approximations a/q with (a,q) = 1 and $|\theta - a/q| \le 1/q^2$. In fact, this can be strengthened a little, and there exist infinitely many approximations with $|\theta - a/q| \le 1/(\sqrt{5}q^2)$. This exercise will show that Dirichlet's theorem cannot be strengthened any further.

Let c be any real number strictly below $1/\sqrt{5}$. Let ϕ denote the Golden Ratio $(1+\sqrt{5})/2$ which is the positive solution to $(f(x) =)x^2 - x - 1 = 0$. Prove that there are only finitely many rational numbers a/q with (a,q) = 1 that satisfy $|\phi - a/q| \le c/q^2$.

Hint: What is a lower bound for |f(a/q)|? Then consider $|f(\phi) - f(a/q)| \dots$

Typeset by \mathcal{AMS} -T_EX