MATH 152: PROBLEM SET 4

Due October 20

1. Let $p \equiv 7(\bmod 40)$ be such that $p-1=2 q$ for a prime q. Prove that 10 is a quadratic non-residue $(\bmod p)$. Prove that 10 is a primitive root $(\bmod p)$.
2. Given a square-free number n (that is, n is not divisible by the square of any prime), we stated in class that the primes p for which n is a quadratic residue $(\bmod p)$ may be described as those primes lying in certain residue classes $(\bmod 4 n)$. Prove this. It may help you to start with an example like $n=15$ and build a proof.
3. Let p be an odd prime such that every quadratic non-residue $(\bmod p)$ is a primitive root $(\bmod p)$.
(i) Show that p is of the form $2^{k}+1$ for some positive integer k.
(ii) Now show that p is of the form $2^{2^{n}}+1$ for a non-negative integer n.
(iii) Conversely if p is of the form $2^{2^{n}}+1$ then show that every quadratic nonresidue is a primitive root.
4. Explain what this sentence means: "In the 7 -adics, the square root of 2 equals $\ldots 213 . "$ Your explanation should make as much sense as $\sqrt{2}=1.414 \ldots$
5. The unit disc $\{x \in \mathbb{Q}:|x|<1\}$ has as its unique center the point 0 . Consider now the p-adic unit disc $\left\{x \in \mathbb{Q}:|x|_{p}<1\right\}$. Show that every point in this disc is at the center of the disc.
6. Let p be an odd prime and consider the congruence $x^{2}+10 x-10 \equiv 0(\bmod p)$.
(a) Find a number n such that the above congruence has two solutions if and only if n is a quadratic residue $(\bmod p)$.
(b) Describe the odd primes p such that n is a quadratic residue $(\bmod p)$, where n is the number from part (a).
