MATH 152: PROBLEM SET 3

Due October 13

1. Let g be a primitive root (mod p). Show that $(p-1)! \equiv g \cdot g^2 \cdot g^3 \cdots g^{p-1} \equiv g^{p(p-1)/2} \pmod{p}$, and conclude Wilson's theorem.

2. Let k and a be positive integers with $a \ge 2$. Show that $k \mid \phi(a^k - 1)$. (Hint: consider the order of a (mod $a^k - 1$).)

3. Let k be a natural number, and p be a prime. Show that

$$\sum_{n=1}^{p-1} n^k \equiv \begin{cases} -1 \pmod{p} & \text{if } (p-1) | k \\ 0 \pmod{p} & \text{if } (p-1) \nmid k. \end{cases}$$

4. In class we discussed how primitive roots \pmod{p} are lifted to primitive roots $\pmod{p^2}$. This problem gives a generalization of that strategy. Let f be a polynomial of degree d with leading coefficient 1, and let f' denote its derivative. Let a be a solution to $f(x) \equiv 0 \pmod{p}$.

(i). If $f'(a) \not\equiv 0 \pmod{p}$ then show that the solution $a \pmod{p}$ lifts (or gives rise) to a unique solution $\pmod{p^2}$.

(ii). If $f'(a) \equiv 0 \pmod{p}$, but $f(a) \not\equiv 0 \pmod{p^2}$ then show that a does not lift to a solution $\pmod{p^2}$.

(iii). If $f'(a) \equiv 0 \pmod{p}$ and $f(a) \equiv 0 \pmod{p^2}$ show that a gives rise to p solutions $\pmod{p^2}$.

5. Prove, by induction or otherwise, that for every $k \ge 0$ that $5^{2^k} \equiv 1 \pmod{2^{k+2}}$ but $\not\equiv 1 \pmod{2^{k+3}}$. Conclude that the order of 5 $\pmod{2^{\alpha}}$ is $2^{\alpha-2}$ for all $\alpha \ge 2$. Prove that every reduced residue class $\pmod{2^{\alpha}}$ may be expressed as ± 1 times a power of 5.

6. Prove that the sequence n^n is periodic \pmod{p} , where p is prime. Determine the least period. (That is, find the least positive number ℓ such that $(n+\ell)^{n+\ell} \equiv n^n \pmod{p}$ for all n.)

Typeset by \mathcal{AMS} -T_EX