MATH 152: PROBLEM SET 3

Due October 13

1. Let g be a primitive root $(\bmod p)$. Show that $(p-1)!\equiv g \cdot g^{2} \cdot g^{3} \cdots g^{p-1} \equiv$ $g^{p(p-1) / 2}(\bmod p)$, and conclude Wilson's theorem.
2. Let k and a be positive integers with $a \geq 2$. Show that $k \mid \phi\left(a^{k}-1\right)$. (Hint: consider the order of $a\left(\bmod a^{k}-1\right)$.)
3. Let k be a natural number, and p be a prime. Show that

$$
\sum_{n=1}^{p-1} n^{k} \equiv \begin{cases}-1(\bmod p) & \text { if }(p-1) \mid k \\ 0(\bmod p) & \text { if }(p-1) \nmid k\end{cases}
$$

4. In class we discussed how primitive roots $(\bmod p)$ are lifted to primitive roots $\left(\bmod p^{2}\right)$. This problem gives a generalization of that strategy. Let f be a polynomial of degree d with leading coefficient 1 , and let f^{\prime} denote its derivative. Let a be a solution to $f(x) \equiv 0(\bmod p)$.
(i). If $f^{\prime}(a) \not \equiv 0(\bmod p)$ then show that the solution $a(\bmod p)$ lifts (or gives rise) to a unique solution $\left(\bmod p^{2}\right)$.
(ii). If $f^{\prime}(a) \equiv 0(\bmod p)$, but $f(a) \not \equiv 0\left(\bmod p^{2}\right)$ then show that a does not lift to a solution $\left(\bmod p^{2}\right)$.
(iii). If $f^{\prime}(a) \equiv 0(\bmod p)$ and $f(a) \equiv 0\left(\bmod p^{2}\right)$ show that a gives rise to p solutions $\left(\bmod p^{2}\right)$.
5. Prove, by induction or otherwise, that for every $k \geq 0$ that $5^{2^{k}} \equiv 1\left(\bmod 2^{k+2}\right)$ but $\not \equiv 1\left(\bmod 2^{k+3}\right)$. Conclude that the order of $5\left(\bmod 2^{\alpha}\right)$ is $2^{\alpha-2}$ for all $\alpha \geq 2$. Prove that every reduced residue class $\left(\bmod 2^{\alpha}\right)$ may be expressed as ± 1 times a power of 5 .
6. Prove that the sequence n^{n} is periodic $(\bmod p)$, where p is prime. Determine the least period. (That is, find the least positive number ℓ such that $(n+\ell)^{n+\ell} \equiv n^{n}$ $(\bmod p)$ for all n.)
