MATH 152: PROBLEM SET 2

Due October 6

1. Let $p \neq 2,5$ be a prime. The decimal expansion of $1 / p$ will involve a certain number of digits which repeat. (E.g. $1 / 3=0.3333$.. has one digit repeating, and $1 / 7$ has six digits repeating.) Prove that the number of digits that repeat equals the order of $10(\bmod p)$.
2. Let d_{N} denote the least common multiple of the first N natural numbers 1,2 , \ldots, N. Let $\pi(x)$ denote the number of primes p with $p \leq x$.
(a) What is the power of p dividing d_{N} ? Prove that

$$
\log d_{N}=\sum_{p \leq N} \log p\left[\frac{\log N}{\log p}\right] \leq(\log N) \pi(N)
$$

(b) Let $f(x)=\sum_{i} a_{i} x^{i}$ be a polynomial with integer coefficients and with degree $\leq N-1$. Prove that

$$
d_{N} \int_{0}^{1} f(x) d x \in \mathbb{Z}
$$

(c) Take $f_{N}(x)=x^{N}(1-x)^{N}$ and use (b) to show that $d_{2 N+1} \int_{0}^{1} f_{N}(x) d x \geq 1$.
(d) Show that $\int_{0}^{1} f_{N}(x) d x \leq 4^{-N}$ and using (c) and (a) deduce that

$$
\pi(2 N+1) \geq \frac{(2 \log 2) N}{\log (2 N+1)}
$$

3. Given any number n prove that there are only finitely many natural numbers x such that $\phi(x)=n$. Find all integers with x with $\phi(x)=100$.
4. If p is a prime prove that $(p-1)!\equiv(p-1)(\bmod 1+2+3+\ldots+(p-1))$.
5. Let p be an odd prime, and let a be coprime to p. If $a \neq 1(\bmod p)$, prove that p divides $1+a+a^{2}+\ldots+a^{p-2}$.
6. Let $f(x)$ be a polynomial with integer coefficients. If $f(a) \equiv k(\bmod m)$ show that $f(a+t m) \equiv k(\bmod m)$ for all integers t. Using this show that $f(x)$ cannot be prime for all integer values of x.
