OSTROWSKI'S THEOREM

The prime numbers also arise in a very surprising manner, having little to do with factoring integers. Namely they arise as the possible ways of defining absolute values on \mathbb{Q}. We begin by defining what an absolute value is.

We say that a function $f: \mathbb{Q} \rightarrow \mathbb{R}_{\geq 0}$ is an absolute value if it satisfies the following properties, for all $x, y \in \mathbb{Q}$:
(i) We have $f(0)=0$ and $f(x)>0$ for $x \neq 0$.
(ii) Multiplicativity: $f(x y)=f(x) f(y)$.
(iii) Triangle inequality: $f(x+y) \leq f(x)+f(y)$.

Remarks. From (i, ii) we see that $f(1)=f(-1)=1$. Moreover, to define f on \mathbb{Q}, by (ii) it suffices to define it on \mathbb{Z}. Since $f(1)=1$ using (iii) it follows that $f(n) \leq|n|$ for all $n \in \mathbb{Z}$.
Example 1. The usual absolute value, $f(x)=|x|$, plainly satisfies these properties.
Example 2. Let $0 \leq \alpha \leq 1$, and take $f(x)=|x|^{\alpha}$. Check that this is an absolute value. The case $\alpha=0$ gives a 'trivial' absolute value: $f(0)=0, f(x)=1$ for all $0 \neq x \in \mathbb{Q}$.
Example 3. Let p be a prime number. If $0 \neq n \in \mathbb{Z}$ we write $n=p^{a} b$ with $p \nmid b$. Define $|n|_{p}=p^{-a}$. If $m / n \in \mathbb{Q}$ set $|m / n|_{p}=|m|_{p} /|n|_{p}$. This gives an example of an absolute value, called the p-adic valuation. Note that the p-adic absolute value satisfies a stronger version of the triangle inequality:

$$
|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)
$$

This inequality is sometimes called the ultrametric inequality, and p-adic absolute values are termed non-Archimedean.
Example 4. Let $\alpha \geq 0$ be a real number, and take $f(x)=|x|_{p}^{\alpha}$. Such f are also absolute values.

Theorem (Ostrowski). Examples 2 and 4 give all the possible absolute values on \mathbb{Q}.
Case 1. Suppose first that there is some natural number n such that $f(n)<1$. We may consider the least such natural number, and because of (ii) that least number must be a prime p. We now claim that the absolute value f corresponds to the p-adic absolute value $|\cdot|_{p}$ as in Examples 3 and 4. Take an integer b, and write it in base p; say $b=$ $b_{0}+b_{1} p+\ldots+b_{k} p^{k}$ with $0 \leq b_{j} \leq p-1$, and $b_{k} \geq 1$. Then

$$
f(b) \leq f\left(b_{0}\right)+f\left(b_{1}\right)+\ldots+f\left(b_{k}\right) \leq(k+1)(p-1)<\left(\frac{\log b}{\log p}+1\right)(p-1)
$$

since we know that $f\left(b_{j}\right) \leq b_{j} \leq p-1$. This inequality holds for all natural numbers b, and therefore it holds for b^{n} for any natural number n :

$$
f(b)^{n}=f\left(b^{n}\right) \leq\left(n \frac{\log b}{\log p}+1\right)(p-1)
$$

Letting $n \rightarrow \infty$ above we obtain that $f(b) \leq 1$ for all integers b.
Knowing $f(p)<1$ we possess all the values $f\left(p^{k}\right)$ for $k \geq 1$. To show that f corresponds to the p-adic absolute value, we now need that $f(b)=1$ for all $(b, p)=1$. Now if $(b, p)=1$ then $\left(b^{n}, p^{n}\right)=1$, and so we may find integers x_{n} and y_{n} with $1=b^{n} x_{n}+p^{n} y_{n}$ so that

$$
1=f(1) \leq f\left(b^{n} x_{n}\right)+f\left(p^{n} y_{n}\right) \leq f(b)^{n}+f(p)^{n}
$$

Now $f(p)<1$ so that as $n \rightarrow \infty$ we have $f(p)^{n} \rightarrow 0$, and so we must have $f(b) \geq 1$. Since we already know that $f(b) \leq 1$ we have shown that $f(b)=1$ as needed.

Case 2. We may now suppose that $f(n) \geq 1$ for all natural numbers n. Let $a \geq 2$ be a natural number. Writing $b=b_{0}+b_{1} a+\ldots+b_{k} a^{k}$ in base a we find that
$f(b) \leq(a-1)\left(1+f(a)+\ldots+f(a)^{k}\right) \leq(k+1)(a-1) f(a)^{k}<\left(\frac{\log b}{\log a}+1\right)(a-1) f(a)^{\frac{\log b}{\log a}}$.
Replacing b by b^{n} above we get that

$$
f(b)^{n} \leq\left(n \frac{\log b}{\log a}+1\right)(a-1) f(a)^{n \frac{\log b}{\log a}} .
$$

Letting $n \rightarrow \infty$ we obtain that

$$
f(b) \leq f(a)^{\frac{\log b}{\log a}}
$$

Interchanging the roles of a and b we conclude that

$$
f(b)^{\frac{1}{\log b}}=f(a)^{\frac{1}{\log a}}
$$

for all natural numbers $a, b \geq 2$. Thus if we write $f(2)=2^{\alpha}$ with $0 \leq \alpha \leq 1$, it follows that $f(n)=n^{\alpha}$ for all n, and we are in the situation of Example 2.

