
OSTROWSKI’S THEOREM

The prime numbers also arise in a very surprising manner, having little to do with
factoring integers. Namely they arise as the possible ways of defining absolute values on
Q. We begin by defining what an absolute value is.

We say that a function f : Q → R≥0 is an absolute value if it satisfies the following
properties, for all x, y ∈ Q:
(i) We have f(0) = 0 and f(x) > 0 for x 6= 0.
(ii) Multiplicativity: f(xy) = f(x)f(y).
(iii) Triangle inequality: f(x + y) ≤ f(x) + f(y).

Remarks. From (i, ii) we see that f(1) = f(−1) = 1. Moreover, to define f on Q, by
(ii) it suffices to define it on Z. Since f(1) = 1 using (iii) it follows that f(n) ≤ |n| for all
n ∈ Z.

Example 1. The usual absolute value, f(x) = |x|, plainly satisfies these properties.

Example 2. Let 0 ≤ α ≤ 1, and take f(x) = |x|α. Check that this is an absolute value.
The case α = 0 gives a ‘trivial’ absolute value: f(0) = 0, f(x) = 1 for all 0 6= x ∈ Q.

Example 3. Let p be a prime number. If 0 6= n ∈ Z we write n = pab with p - b. Define
|n|p = p−a. If m/n ∈ Q set |m/n|p = |m|p/|n|p. This gives an example of an absolute
value, called the p-adic valuation. Note that the p-adic absolute value satisfies a stronger
version of the triangle inequality:

|x + y|p ≤ max(|x|p, |y|p).

This inequality is sometimes called the ultrametric inequality, and p-adic absolute values
are termed non-Archimedean.

Example 4. Let α ≥ 0 be a real number, and take f(x) = |x|αp . Such f are also absolute
values.

Theorem (Ostrowski). Examples 2 and 4 give all the possible absolute values on Q.

Case 1. Suppose first that there is some natural number n such that f(n) < 1. We may
consider the least such natural number, and because of (ii) that least number must be
a prime p. We now claim that the absolute value f corresponds to the p-adic absolute
value | · |p as in Examples 3 and 4. Take an integer b, and write it in base p; say b =
b0 + b1p + . . . + bkpk with 0 ≤ bj ≤ p− 1, and bk ≥ 1. Then

f(b) ≤ f(b0) + f(b1) + . . . + f(bk) ≤ (k + 1)(p− 1) <
( log b

log p
+ 1

)
(p− 1),
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since we know that f(bj) ≤ bj ≤ p − 1. This inequality holds for all natural numbers b,
and therefore it holds for bn for any natural number n:

f(b)n = f(bn) ≤
(
n

log b

log p
+ 1

)
(p− 1).

Letting n →∞ above we obtain that f(b) ≤ 1 for all integers b.
Knowing f(p) < 1 we possess all the values f(pk) for k ≥ 1. To show that f corresponds

to the p-adic absolute value, we now need that f(b) = 1 for all (b, p) = 1. Now if (b, p) = 1
then (bn, pn) = 1, and so we may find integers xn and yn with 1 = bnxn + pnyn so that

1 = f(1) ≤ f(bnxn) + f(pnyn) ≤ f(b)n + f(p)n.

Now f(p) < 1 so that as n →∞ we have f(p)n → 0, and so we must have f(b) ≥ 1. Since
we already know that f(b) ≤ 1 we have shown that f(b) = 1 as needed.

Case 2. We may now suppose that f(n) ≥ 1 for all natural numbers n. Let a ≥ 2 be a
natural number. Writing b = b0 + b1a + . . . + bkak in base a we find that

f(b) ≤ (a− 1)(1 + f(a) + . . . + f(a)k) ≤ (k + 1)(a− 1)f(a)k <
( log b

log a
+ 1

)
(a− 1)f(a)

log b
log a .

Replacing b by bn above we get that

f(b)n ≤
(
n

log b

log a
+ 1

)
(a− 1)f(a)n log b

log a .

Letting n →∞ we obtain that
f(b) ≤ f(a)

log b
log a .

Interchanging the roles of a and b we conclude that

f(b)
1

log b = f(a)
1

log a ,

for all natural numbers a, b ≥ 2. Thus if we write f(2) = 2α with 0 ≤ α ≤ 1, it follows
that f(n) = nα for all n, and we are in the situation of Example 2.


