OSTROWSKI'S THEOREM

The prime numbers also arise in a very surprising manner, having little to do with factoring integers. Namely they arise as the possible ways of defining absolute values on \mathbb{Q} . We begin by defining what an absolute value is.

We say that a function $f : \mathbb{Q} \to \mathbb{R}_{\geq 0}$ is an absolute value if it satisfies the following properties, for all $x, y \in \mathbb{Q}$:

(i) We have f(0) = 0 and f(x) > 0 for $x \neq 0$.

(ii) Multiplicativity: f(xy) = f(x)f(y).

(iii) Triangle inequality: $f(x+y) \le f(x) + f(y)$.

Remarks. From (i, ii) we see that f(1) = f(-1) = 1. Moreover, to define f on \mathbb{Q} , by (ii) it suffices to define it on \mathbb{Z} . Since f(1) = 1 using (iii) it follows that $f(n) \leq |n|$ for all $n \in \mathbb{Z}$.

Example 1. The usual absolute value, f(x) = |x|, plainly satisfies these properties.

Example 2. Let $0 \le \alpha \le 1$, and take $f(x) = |x|^{\alpha}$. Check that this is an absolute value. The case $\alpha = 0$ gives a 'trivial' absolute value: f(0) = 0, f(x) = 1 for all $0 \ne x \in \mathbb{Q}$.

Example 3. Let p be a prime number. If $0 \neq n \in \mathbb{Z}$ we write $n = p^a b$ with $p \nmid b$. Define $|n|_p = p^{-a}$. If $m/n \in \mathbb{Q}$ set $|m/n|_p = |m|_p/|n|_p$. This gives an example of an absolute value, called the *p*-adic valuation. Note that the *p*-adic absolute value satisfies a stronger version of the triangle inequality:

$$|x+y|_p \le \max(|x|_p, |y|_p).$$

This inequality is sometimes called the *ultrametric inequality*, and *p*-adic absolute values are termed *non-Archimedean*.

Example 4. Let $\alpha \ge 0$ be a real number, and take $f(x) = |x|_p^{\alpha}$. Such f are also absolute values.

Theorem (Ostrowski). Examples 2 and 4 give all the possible absolute values on \mathbb{Q} .

Case 1. Suppose first that there is some natural number n such that f(n) < 1. We may consider the least such natural number, and because of (ii) that least number must be a prime p. We now claim that the absolute value f corresponds to the p-adic absolute value $|\cdot|_p$ as in Examples 3 and 4. Take an integer b, and write it in base p; say $b = b_0 + b_1 p + \ldots + b_k p^k$ with $0 \le b_j \le p - 1$, and $b_k \ge 1$. Then

$$f(b) \le f(b_0) + f(b_1) + \ldots + f(b_k) \le (k+1)(p-1) < \left(\frac{\log b}{\log p} + 1\right)(p-1),$$

Typeset by $\mathcal{A}_{\mathcal{M}} \! \mathcal{S} \text{-} T_{\!E} \! X$

OSTROWSKI'S THEOREM

since we know that $f(b_j) \leq b_j \leq p-1$. This inequality holds for all natural numbers b, and therefore it holds for b^n for any natural number n:

$$f(b)^n = f(b^n) \le \left(n\frac{\log b}{\log p} + 1\right)(p-1).$$

Letting $n \to \infty$ above we obtain that $f(b) \leq 1$ for all integers b.

Knowing f(p) < 1 we possess all the values $f(p^k)$ for $k \ge 1$. To show that f corresponds to the p-adic absolute value, we now need that f(b) = 1 for all (b, p) = 1. Now if (b, p) = 1 then $(b^n, p^n) = 1$, and so we may find integers x_n and y_n with $1 = b^n x_n + p^n y_n$ so that

$$1 = f(1) \le f(b^n x_n) + f(p^n y_n) \le f(b)^n + f(p)^n$$

Now f(p) < 1 so that as $n \to \infty$ we have $f(p)^n \to 0$, and so we must have $f(b) \ge 1$. Since we already know that $f(b) \le 1$ we have shown that f(b) = 1 as needed.

Case 2. We may now suppose that $f(n) \ge 1$ for all natural numbers n. Let $a \ge 2$ be a natural number. Writing $b = b_0 + b_1 a + \ldots + b_k a^k$ in base a we find that

$$f(b) \le (a-1)(1+f(a)+\ldots+f(a)^k) \le (k+1)(a-1)f(a)^k < \left(\frac{\log b}{\log a}+1\right)(a-1)f(a)^{\frac{\log b}{\log a}}$$

Replacing b by b^n above we get that

$$f(b)^n \le \left(n\frac{\log b}{\log a} + 1\right)(a-1)f(a)^{n\frac{\log b}{\log a}}.$$

Letting $n \to \infty$ we obtain that

$$f(b) \le f(a)^{\frac{\log b}{\log a}}.$$

Interchanging the roles of a and b we conclude that

$$f(b)^{\frac{1}{\log b}} = f(a)^{\frac{1}{\log a}}$$

for all natural numbers $a, b \ge 2$. Thus if we write $f(2) = 2^{\alpha}$ with $0 \le \alpha \le 1$, it follows that $f(n) = n^{\alpha}$ for all n, and we are in the situation of Example 2.