MATH 152: MIDTERM SOLUTIONS

K. Soundararajan

NOTE: Proofs/explanations are needed for all problems. All the best!

1. Consider the group of reduced residue classes (mod 1001). (Note $1001 = 7 \times 11 \times 13$). What is the largest possible order of an element of this group? You must also prove that there are elements of this order.

Solution. Let a be a reduced residue class (mod 1001). Since $a^6 \equiv 1 \pmod{7}$, $a^{10} \equiv 1 \pmod{11}$ and $a^{12} \equiv 1 \pmod{13}$ we have that $a^{60} \equiv 1 \pmod{1001}$; note 60 is the l.c.m. of 6, 10 and 12.

On the other hand, pick a primitive root $g_1 \pmod{7}$, a primitive root $g_2 \pmod{11}$ and a primitive root $g_3 \pmod{13}$. If we choose $g \equiv g_1 \pmod{7}$, $\equiv g_2 \pmod{11}$, and $g_3 \pmod{13}$ then the order of $g \pmod{1001}$ must be a multiple of 6, 10 and 12, and thus a multiple of 60. So the order of $g \pmod{1001}$ is 60 as needed.

2. Let $\ell \geq 2$ be a natural number and let p be a prime with $p \equiv 1 \pmod{\ell}$. Consider the congruence $x^{\ell} \equiv a \pmod{p}$ for (a, p) = 1. Prove that there are $(p - 1)/\ell$ reduced residue classes a for which this congruence has ℓ solutions, and for the remaining reduced residue classes the congruence has no solutions.

Solution. Let g be a primitive root $(\mod p)$. If $a \equiv g^{\ell k} \pmod{p}$ for some integer $0 \leq k < (p-1)/\ell$ then the congruence $x^{\ell} \equiv a \pmod{p}$ has the ℓ solutions $x \equiv g^{k+j(p-1)/\ell}$ for $0 \leq j < \ell$. Since the congruence has at most ℓ solutions, it follows that for such a there are exactly ℓ solutions. Note that there are $(p-1)/\ell$ such values of a.

On the other hand, if $x^{\ell} \equiv a \pmod{p}$ for some x, then writing $x = g^k$ we find that $a \equiv g^{k\ell} \pmod{p}$. Thus there are $(p-1)/\ell$ values of a for which the congruence has ℓ solutions, and for the remaining values of a there are no solutions.

3. Is it true that there is a rational number x with $|x|_2 \ge 1024$, $|x - 1|_3 \le 1/27$ and $|x - 2|_5 = 25$? Here $|x|_p$ denotes the *p*-adic absolute value of x. You must explain your answer.

Solution. Yes. Write x = a/b for natural numbers a and b with (a, b) = 1. The condition $|x|_2 \ge 1024$ is met by requiring 1024|b. The condition $|x - 2|_5 = 25$ is met by requiring 25||b. Thus choose $b = 1024 \times 25 = 25600$. The remaining condition is that $|x - 1|_3 \le 1/27$ which means 27|(a - 25600). Choose a = 25627 and we are done.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

K. SOUNDARARAJAN

4. (a). Let n be an odd natural number with $n \equiv 5 \pmod{13}$. Prove that the congruence $x^2 \equiv 13 \pmod{n}$ has no solutions.

(b). Suppose n is odd and $n \equiv 1 \pmod{13}$. Is it necessarily true that the congruence $x^2 \equiv 13 \pmod{n}$ has a solution?

Solution. Note that the problem did not specify n to be prime.

(a). Note that $\left(\frac{5}{13}\right) = \left(\frac{13}{5}\right) = -1$. So since *n* is a quadratic non-residue (mod 1)3, we know that *n* must be divisible by some prime *p* which is a quadratic non-residue (mod 13). But if $x^2 \equiv 13 \pmod{n}$ has a solution, then so does $x^2 \equiv 13 \pmod{p}$. That is, $\left(\frac{13}{p}\right) = 1$. But this contradicts quadratic reciprocity: $\left(\frac{13}{p}\right) = \left(\frac{p}{13}\right) = -1$. So the congruence $x^2 \equiv 13 \pmod{n}$ does not have a solution.

(b). This is not necessarily true, since n could be the product of two primes (say) which are both quadratic non-residues (mod 1)3. For example take $n = 5 \times 47$. If $x^2 \equiv 13 \pmod{n}$ then we'd have $x^2 \equiv 13 \pmod{5}$ which is impossible.