MATH 152: MIDTERM SOLUTIONS

K. Soundararajan

NOTE: Proofs/explanations are needed for all problems. All the best!

1. Consider the group of reduced residue classes $(\bmod 1001)$. (Note $1001=7 \times 11 \times 13)$. What is the largest possible order of an element of this group? You must also prove that there are elements of this order.

Solution. Let a be a reduced residue class $(\bmod 1001)$. Since $a^{6} \equiv 1(\bmod 7), a^{10} \equiv 1$ $(\bmod 11)$ and $a^{12} \equiv 1(\bmod 13)$ we have that $a^{60} \equiv 1(\bmod 1001) ;$ note 60 is the l.c.m. of 6,10 and 12 .

On the other hand, pick a primitive root $g_{1}(\bmod 7)$, a primitive root $g_{2}(\bmod 11)$ and a primitive root $g_{3}(\bmod 13)$. If we choose $g \equiv g_{1}(\bmod 7), \equiv g_{2}(\bmod 11)$, and g_{3} $(\bmod 13)$ then the order of $g(\bmod 1001)$ must be a multiple of 6,10 and 12 , and thus a multiple of 60 . So the order of $g(\bmod 1001)$ is 60 as needed.
2. Let $\ell \geq 2$ be a natural number and let p be a prime with $p \equiv 1(\bmod \ell)$. Consider the congruence $x^{\ell} \equiv a(\bmod p)$ for $(a, p)=1$. Prove that there are $(p-1) / \ell$ reduced residue classes a for which this congruence has ℓ solutions, and for the remaining reduced residue classes the congruence has no solutions.

Solution. Let g be a primitive root $(\bmod p)$. If $a \equiv g^{\ell k}(\bmod p)$ for some integer $0 \leq$ $k<(p-1) / \ell$ then the congruence $x^{\ell} \equiv a(\bmod p)$ has the ℓ solutions $x \equiv g^{k+j(p-1) / \ell}$ for $0 \leq j<\ell$. Since the congruence has at most ℓ solutions, it follows that for such a there are exactly ℓ solutions. Note that there are $(p-1) / \ell$ such values of a.

On the other hand, if $x^{\ell} \equiv a(\bmod p)$ for some x, then writing $x=g^{k}$ we find that $a \equiv g^{k \ell}(\bmod p)$. Thus there are $(p-1) / \ell$ values of a for which the congruence has ℓ solutions, and for the remaining values of a there are no solutions.
3. Is it true that there is a rational number x with $|x|_{2} \geq 1024,|x-1|_{3} \leq 1 / 27$ and $|x-2|_{5}=25$? Here $|x|_{p}$ denotes the p-adic absolute value of x. You must explain your answer.

Solution. Yes. Write $x=a / b$ for natural numbers a and b with $(a, b)=1$. The condition $|x|_{2} \geq 1024$ is met by requiring $1024 \mid b$. The condition $|x-2|_{5}=25$ is met by requiring $25 \| b$. Thus choose $b=1024 \times 25=25600$. The remaining condition is that $|x-1|_{3} \leq 1 / 27$ which means $27 \mid(a-25600)$. Choose $a=25627$ and we are done.
4. (a). Let n be an odd natural number with $n \equiv 5(\bmod 13)$. Prove that the congruence $x^{2} \equiv 13(\bmod n)$ has no solutions.
(b). Suppose n is odd and $n \equiv 1(\bmod 13)$. Is it necessarily true that the congruence $x^{2} \equiv 13(\bmod n)$ has a solution?

Solution. Note that the problem did not specify n to be prime.
(a). Note that $\left(\frac{5}{13}\right)=\left(\frac{13}{5}\right)=-1$. So since n is a quadratic non-residue $(\bmod 1) 3$, we know that n must be divisible by some prime p which is a quadratic non-residue $(\bmod 13)$. But if $x^{2} \equiv 13(\bmod n)$ has a solution, then so does $x^{2} \equiv 13(\bmod p)$. That is, $\left(\frac{13}{p}\right)=1$. But this contradicts quadratic reciprocity: $\left(\frac{13}{p}\right)=\left(\frac{p}{13}\right)=-1$. So the congruence $x^{2} \equiv 13$ $(\bmod n)$ does not have a solution.
(b). This is not necessarily true, since n could be the product of two primes (say) which are both quadratic non-residues $(\bmod 1) 3$. For example take $n=5 \times 47$. If $x^{2} \equiv 13$ $(\bmod n)$ then we'd have $x^{2} \equiv 13(\bmod 5)$ which is impossible.

