MATH 152: MIDTERM

In class: Closed Book and Closed Notes

NOTE: Proofs/explanations are needed for all problems. All the best!

1. Consider the group of reduced residue classes ($\bmod 1001$). (Note $1001=7 \times 11 \times 13$). What is the largest possible order of an element of this group? You must also prove that there are elements of this order.
2. Let $\ell \geq 2$ be a natural number and let p be a prime with $p \equiv 1(\bmod \ell)$. Consider the congruence $x^{\ell} \equiv a(\bmod p)$ for $(a, p)=1$. Prove that there are $(p-1) / \ell$ reduced residue classes a for which this congruence has ℓ solutions, and for the remaining reduced residue classes the congruence has no solutions.
3. Is it true that there is a rational number x with $|x|_{2} \geq 1024,|x-1|_{3} \leq 1 / 27$ and $|x-2|_{5}=25$? Here $|x|_{p}$ denotes the p-adic absolute value of x. You must explain your answer.
4. (a). Let n be an odd natural number with $n \equiv 5(\bmod 13)$. Prove that the congruence $x^{2} \equiv 13(\bmod n)$ has no solutions.
(b). Suppose n is odd and $n \equiv 1(\bmod 13)$. Is it necessarily true that the congruence $x^{2} \equiv 13(\bmod n)$ has a solution?
