1 Midterm Review Exercises

Exercise 1.1 (Midterm 2, Winter ’11)
(a) Let
\[f(x, y) = \frac{x^2 y + xy^2 + y^3}{x^2 + y^2}. \]
Find
\[\lim_{(x,y) \to (0,0)} f(x,y) \]
if the limit exists.
(b) Compute \(\frac{\partial f}{\partial x} \), and use this to determine
\[\lim_{(x,y) \to (0,0)} \frac{\partial f}{\partial x} \]
if the limit exists.

Exercise 1.2 (Midterm 2, Winter ’11) Let \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) be the function
\[g(x, y) = (\sin(x + 3y), xy^2 + y) \]
and suppose that \(f \) is a function defined on a neighborhood of \((0,0) \), such that the composition \(f \circ g \) is the identity function. Find \(D_f(0,0) \).

Exercise 1.3 (Midterm 2, Autumn ’12) Define a transformation \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) by first rotating counterclockwise by \(\pi/2 \) and then multiplying by the matrix \(A = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix} \).
(a) Find a matrix \(B \) so that \(T(x) = Bx \) for all \(x \in \mathbb{R}^2 \).
(b) What is the area of the image of the unit square (vertices \((0,0), (1,0), (1,1), (0,1) \)) under \(T \)?
(c) How would your answers to (a) and (b) change if you first multiplied by \(A \) and then rotated by \(\pi/2 \).
Exercise 1.4 (Midterm 2, Autumn ’12) Let \(A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \).

(a) Compute the determinant of \(A \).
(b) Find the inverse of \(A \).
(c) Let \(A \) be the \(3 \times 3 \) matrix given in part (a). Suppose \(B \) is another \(3 \times 3 \) matrix such that
\[
AB = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 3 & 0 \end{pmatrix}.
\]
What is \(B \)?

Exercise 1.5 (Midterm 2, Autumn ’12) Let \(A \) be the matrix \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \), and let \(Q_A : \mathbb{R}^2 \to \mathbb{R} \) be the associated quadratic function
\[
Q_A(x) = x^T Ax.
\]

(a) Find \(\frac{\partial Q_A}{\partial x} \) and \(\frac{\partial Q_A}{\partial y} \).
(b) Determine whether \(Q_A \) is positive definite, negative definite, positive semidefinite, negative semidefinite, or indefinite.

Exercise 1.6 (Midterm 2, Autumn ’12) True or False.

1. Let \(v \) be a nonzero vector in \(\mathbb{R}^3 \), and let \(w \) be another vector which is not a multiple of \(v \). Then the \(3 \times 3 \) matrix whose columns are the three vectors, \(\{v, w, v \times w\} \) has nonzero determinant.

2. If \(A \) and \(B \) are square matrices, \(C = AB \), then \(\operatorname{rank}(A) \geq \operatorname{rank}(C) \).

3. Let \(A \) be any \(2 \times 2 \) matrix whose determinant is nonzero. Then \(A \) has at least one (real) eigenvalue.

4. Suppose \(A, B, \) and \(C \) are \(n \times n \) matrices such that \(A = C^{-1}BC \). Then \(\det(A) = \det(B) \).

Exercise 1.7 (Midterm 2, Autumn ’12) Consider the following basis for \(\mathbb{R}^2 \):
\[
\mathcal{B} = \{v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ v_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}\}.
\]
Let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear transformation that has the matrix \(B = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \) with respect to the basis \(\mathcal{B} \). Find the matrix \(A \) for \(T \) with respect to the standard basis for \(\mathbb{R}^2 \).
Exercise 1.8 (Midterm 2, Autumn ’12)
(a) Let $M = \begin{pmatrix} 0 & 4 \\ 9 & 0 \end{pmatrix}$. Find the eigenvalues of M, and bases of the corresponding eigenspaces.

(b) Let M be the 2×2 matrix given in part (a). Find a diagonal matrix D and a matrix C such that $M = CDC^{-1}$.

Exercise 1.9 (Midterm 2, Autumn ’12) Let P be an $n \times n$ matrix that satisfies $P^2 = P$. Show that if λ is an eigenvalue of P then λ^2 is also an eigenvalue of P. That this implies the only possible eigenvalues of P are 0 and 1.