Lecture Outline (Derivative as a Function II)
Wednesday, January 30

Recap

Last time we talked about the derivative of a function as a function itself. For a function \(f(x) \) we said the derivative can be written either as \(f'(x) \) or \(\frac{d}{dx}[f(x)] \), and is given by

\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
\]

We computed the derivative of several of our favorite functions.

Terminology

Definition: A function \(f \) is **differentiable at** \(a \) if \(f'(a) \) exists. It is **differentiable on an open interval** \((a, b)\) if it is differentiable at every number in the interval.

For this section, let’s use \(y = f(x) = x^2 \) as a running example. We said that \(f'(x) = 2x \) is called the derivative of \(x^2 \). The process of finding the derivative is called **differentiation**. You might be asked to ”**differentiate** \(x^2 \),” in which case you would write down the derivative of \(x^2 \), which is \(2x \).

Non-Differentiability

Although we will be dealing mostly with differentiable functions in this class, there are a handful of times when we will encounter functions which have points which are not differentiable.

The function \(f(x) \) is **not differentiable** at \(x = a \) if

\[
\lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
\]
does not exist.

There are three typical types of non-differentiability.
1. **Corners** A function is not differentiable at a point where the graph of f has a kink or corner. Essentially, these places fail to be differentiable because the left and right-hand limits do not match up.

2. **Discontinuities** A function is not differentiable at a point where the graph of f is not continuous.

3. **Vertical Tangents** Finally, a function is not differentiable at a point on the graph where the tangent line to f is a vertical line. This is because the slope of the tangent line to the graph at this point is infinite, which in our class means "does not exist."

Notation

There are many different notations in use to signify the derivative. If $y = f(x) = x^2$, we can write:

$$2x = f'(x) = y' = (x^2)' = \frac{d}{dx} x^2 = \frac{d(x^2)}{dx} = \frac{dy}{dx}.$$

The first three in the list should make some sense. But what are the last three? First of all, $\frac{d}{dx}$ is not a fraction (and so you cannot cancel the d in the numerator with the d in the denominator!) You should just regard $\frac{d}{dx}$ as a fixed symbol.

More Derivatives

We started with a function $f(x)$ and differentiated to get a new function $f'(x)$. But then we could differentiate $f'(x)$ to get another new function! We need better terminology. So call $f'(x)$ the **first derivative** of $f(x)$. The the derivative of $f'(x)$ is written $f''(x)$ and is called the **second derivative** of $f(x)$. But of course $f''(x)$ is also the (first) derivative of $f'(x)$. If we wanted to differentiate again, we would get $f'''(x)$. This is the third derivative of $f(x)$, the second derivative of $f'(x)$, and the (first) derivative of $f''(x)$. In general, the n-th derivative of $f(x)$ is written $f^{(n)}(x)$.

If we had written $y = x^2$, then the first derivative would be $y' = 2x$, and the second derivative would be $y'' = 2$, and the third derivative would be $y''' = 0$.

2