1.1 Let B be a Banach space, $\mathcal{L}(B)$ the algebra of bounded (linear) operators on B.

a. Prove that if $T \in \mathcal{L}(B)$ is injective, has dense range, and is bounded below (that is $\inf_{\|x\|=1} \|Tx\| > 0$) then T is invertible. Conclude that T fails to be invertible for one of the following mutually exclusive reasons:

- T is not injective, i.e., it has a non-trivial kernel: $\ker(T) = \{ x : Tx = 0 \} \neq \{0\}$.
- T is injective and TB is dense in B, but $\inf_{\|x\|=1} \|Tx\| = 0$, $(T$ is not “bounded below”).
- T is injective, but TB is not dense in B, that is $\ker(T) = \{0\}$ but $\ker(T^*) \neq \{0\}$.

The spectrum of $T \in \mathcal{L}(B)$ is, by definition, the set $\sigma(T) = \{ \lambda : \exists(T - \lambda I)^{-1} \}$.

b. Prove that $\sigma(T)$ is compact.

Hint: Prove that the set of invertible elements in $\mathcal{L}(B)$ is open.

The point-spectrum $\sigma_p(T)$ is the set of λ such that $T - \lambda I$ satisfies s-1 above. Check that $\sigma_p(T)$ consists of the eigenvalues of T.

The continuous-spectrum $\sigma_c(T)$ is the set of λ such that $T - \lambda I$ satisfies s-2 above. $\sigma_c(T)$ is also referred to as the approximate-point-spectrum and its elements as approximate eigenvalues. (Observe that λ is an approximate eigenvalue if for every $\varepsilon > 0$ there exist a unit vector v such that $\|Tv - \lambda v\| < \varepsilon$.)

The residual-spectrum $\sigma_r(T)$ is the set of λ such that $T - \lambda I$ satisfies s-3 above.

1.2 Let T be a bounded operator on B and $P(T) = \sum_{n=0}^{N} a_n T^n$ with $a_n \in \mathbb{C}$.

a. Prove: $\sigma(P(T)) = P(\sigma(T))$.

Hint: Write $P(T) - \lambda = a_N \prod_{\lambda_j} (T - \lambda_j)$.

b. Refine: $\sigma_p(P(T)) = P(\sigma_p(T))$ and $\sigma_c(P(T)) \subset P(\sigma_c(T))$.

1.3 Let $\mathcal{H} = l^2(\mathbb{N})$ denote the Hilbert space of one sided square summable numerical sequences $f = \{ a_0, a_1, \cdots, a_n, \cdots \}$, with $\|f\| = \left(\sum_{n=0}^{\infty} |a_n|^2 \right)^{\frac{1}{2}}$.

The map S, defined by $S \{ a_n \} = \{ 0, a_0, a_1, \cdots \}$ is an isometry of \mathcal{H} into itself. Describe and classify its spectrum.

Hint: \mathcal{H} is isometric to the (Hardy) space H^2 of functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ holomorphic in the unit disc $D = \{ z : |z| < 1 \}$, such that

$$\|f\| = \lim_{r \to 1} \left(\frac{1}{2\pi} \int |f(re^{it})|^2 \, dt \right)^{\frac{1}{2}} = \left(\sum |a_n|^2 \right)^{\frac{1}{2}} < \infty,$$

and S is conjugate to the operator $f \mapsto zf$ on H^2.

For the notation we assume that N is the degree of P, i.e., $a_N \neq 0$.

Answer: The spectrum is the closed unit disc \(\{ \lambda : |\lambda| \leq 1 \} \).

Every \(\lambda \) such that \(|\lambda| < 1 \) is in the residual spectrum. (Verify that if \(|\lambda| < 1 \) the operator \(S - \lambda \) is injective, but its range \((S - \lambda)\mathcal{H} \) is a closed subspace of codimension 1).

Every \(\varepsilon \) on the boundary (i.e. \(|\varepsilon| = 1 \)) is in the continuous spectrum.

\((S - \lambda) \) is not bounded below: for \(|\lambda| = 1 \) write \(f_N = \sum_{n=0}^{N} \lambda^n \varepsilon_n \) and observe that \(\|f_N\| = \sqrt{N+1} \) while

\[
(S - \lambda)f_N = \lambda^N \varepsilon^{N+1} - \lambda,
\]

and \(\|(S - \lambda)f_N\| = \sqrt{2} \).

1.4 Prove that the spectrum \(\sigma(T) \) depends continuously on \(T \): For every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(\|T - T_1\| < \delta \), then every point in \(\sigma(T_1) \) lies within \(\varepsilon \) from \(\sigma(T) \).

Hint: Check that, for some constant \(K \), \(\|(T - \lambda)^{-1}\| \leq K \) on the set \(\Lambda = \{ \lambda : \text{dist}(\lambda, \sigma(T)) \geq \varepsilon \} \).

Take \(\delta < K^{-1} \), then

\[
T_1 - \lambda = (T - \lambda)(1 + (T - \lambda)^{-1}(T_1 - T))
\]

and for \(\lambda \in \Lambda \) both factors are invertible.

1.5 Prove:

a. Every measurable homomorphism of \(\mathbb{T} \) into \(\mathbb{T}^* = \{ \varepsilon : |\varepsilon| = 1 \} \subset \mathbb{C} \) is given by \(t \mapsto e^{int} \) with \(n \in \mathbb{N} \).

Answer: The quick answer is to check that the Fourier series of a measurable homomorphism \(\varphi \), well defined since \(\varphi \in L^1(\mathbb{T}) \), consists of a single non zero summand. The “real variables” proof can be done as follows.

Let \(\varphi \) be a measurable homomorphism of \(\mathbb{T} \) into \(\mathbb{T}^* = \{ \varepsilon : |\varepsilon| = 1 \} \).

a.1. Claim: \(\varphi \) is continuous at \(t = 0 \), (and hence everywhere!).

Proof: Given \(\varepsilon > 0 \), divide \(\mathbb{T}^* \) into \(N > \frac{\varepsilon}{\varphi(1)} \) equal arcs \(I_j \). Let \(j \) be such that \(E_j = \varphi^{-1}(I_j) \) has positive measure, and observe that \(\varphi \) maps \(E_j - E_j \) into an arc of length \(< \frac{\varepsilon}{N} \) centered at \(\varepsilon = 1 \). But \(E_j - E_j \) contains an interval \([-\delta, \delta] \). It follows that if \(|t_1 - t_2| < \delta \), then \(|\varphi(t_1) - \varphi(t_2)| < \varepsilon \).

If \(\varphi(t) = 1 \) for all \(t \) we have \(n = 0 \) and nothing to prove.

Otherwise the range of \(\varphi \) is a dense subgroup of \(\mathbb{T}^* \), and since \(\varphi \) is continuous, the range is all of \(\mathbb{T}^* \). In particular, \(\Gamma = \varphi^{-1}(1) \subset \mathbb{T} \) is a finite subgroup, that is, the group of roots of unity of order \(m \) for some positive integer \(m \).

a.2. For \(t \in (-\pi, \pi] \) write \(\varphi(t) = e^{i\psi(t)} \) with \(\psi \) continuous and \(\psi(0) = 0 \), \((i\psi(t) \) is a branch of \(\log \varphi(t) \). The assumption that \(\varphi \) is a homomorphism translates to \(\psi(t_1 + t_2) = \psi(t_1) + \psi(t_2) \) when \(t_1, t_2, t_1 + t_2 \) are all in \([-\pi, \pi] \). In particular \(\psi(k\vartheta) = k\psi(\vartheta) \) for all \(\vartheta \) and \(k \) such that \(k\vartheta \in (-\pi, \pi] \).

a.3. \(\psi \) has no zeros in \(J = (0, \frac{2\pi}{m}) \) and thus have a constant sign. This implies that \(\psi \) is monotone, increasing if it is positive in \(J \), and decreasing otherwise. Write \(n = m \) if \(\psi \) is increasing, \(n = -m \) otherwise.

Thus \(\psi \) is continuous and monotone on \((-\pi, \pi] \), and \(\psi\left(\frac{2\pi}{m}\right) = \frac{2\pi}{m} \). It follows that \(\psi(t) = nt \) and \(\varphi(t) = e^{int} \).
b. Every measurable homomorphism of \mathbb{R} into \mathbb{T}^* is given by $x \mapsto e^{i\xi x}$ with $\xi \in \mathbb{R}$.

Answer: If φ is a measurable homomorphism of \mathbb{R} into \mathbb{T}^*, it is continuous (same proof as above). If $\varphi(x) = 1$ for all x we have $\xi = 0$. Otherwise, write $\varphi(x) = e^{i\psi(x)}$ with a continuous ψ, and check that ψ is linear. (Notice that this is somewhat simpler than the previous case since ψ is now defined and is continuous globally.

Another way is to check that the subgroup $G = \{x: \varphi(x) = 1\}$ is not trivial, which reduces the problem to that on \mathbb{R}/G, i.e. to measurable homomorphism on \mathbb{T}.

c. Every measurable proper subgroup of \mathbb{T} or of \mathbb{R} has zero Lebesgue measure.

Answer: If $G \subset \mathbb{T}$ is a subgroup, then $G - G \subset G$. If G has positive measure, $G - G$ contains an interval; and since every interval spans \mathbb{T}, $G = \mathbb{T}$ is not a proper subgroup. Similar proof when $G \subset \mathbb{R}$.

1.6 The spectral norm of T, (denoted here by $\|T\|_{\text{sp}}$, another common notation is $\|T\|_{\infty}$) is defined by $\|T\|_{\text{sp}} = \max_{\lambda \in \sigma(T)} |\lambda|$. Prove that $\|T\|_{\text{sp}} = \lim_{n \to \infty} \sqrt[n]{\|T^n\|}$.

Answer: There are two issues: the existence of the limit and its relation to the spectral norm.

a. For the existence of the limit notice that $a_n = \log \|T^n\|$ is subadditive: $a_{n+m} \leq a_n + a_m$.
This implies that $a_{km} \leq ka_n$, or $\frac{1}{kn}a_{km} \leq \frac{1}{n}a_n$, for all $k \in \mathbb{N}$. This, in turn, implies $\limsup_{n} \frac{1}{n}a_n = \lim inf_{n} \frac{1}{n}a_n$.

b. The series $\sum T^n \lambda^{-n}$ converges in norm for $|\lambda| > \lim \|T^n\|^\frac{1}{n}$ so that $\|T\|_{\text{sp}} \leq \liminf_{n \to \infty} \|T^n\|^\frac{1}{n}$. On the other hand, for all $x \in B$, $y \in B^*$, the Laurent expansion $\langle (T - \lambda I)^{-1}x, y \rangle = \sum \langle T^n x, y \rangle \lambda^{-n}$ converges for $|\lambda| > \|T\|_{\text{sp}}$.

This means that, given $x \in B$, the sequence $\langle T^n x, y \rangle \lambda^{-n}$ is bounded for every $y \in B^*$ and the uniform boundedness principle implies that $\|\lambda^{-n} T^n x\|$ is bounded (for every $x \in B$). Applying the uniform boundedness principle once more we have $\lambda^{-n} \|T^n\| = O(1)$.

3