A generalization of the union-closed set conjecture

Yunjiang Jiang

April 29, 2009

The union closed set conjecture states the following: if B is a finite set, and $A \subseteq \mathcal{P}(B)$ is a collection of subsets closed under the union operation. Then there is at least one element $b \in B$ that appears in at least half of all the sets in A.

We propose the following natural generalization of this conjecture

Conjecture 0.1. Let $|B| = n$ be the size of B. For any $k \leq n$ positive integer, there exists at least one subset $S \subseteq B$ of size k such that it is contained in at least $2^{-k}|A|$ of the sets in A.

Notice that when $k = 1$ we have the Union closed set conjecture.

Below we prove the conjecture for the cases $k = n, n-1, n-2$.

Proof. We translate the problem in the language of binary string. So each element of A is represented as a binary number of n bits, if we fix an ordering of the elements of B. And union corresponds to bit-wise operation.

$k = n$. This requires only that B is contained in one of the sets in A, only when $|A| \geq 2^n$, but this means $|A| = 2^n$ and it's the power set of B, which in particular contains B.

$k = n-1$. We divide into three cases based on the size of A. When $|A| < 2^{n-1}$, we need 0 sets that contains a subset of size $n-1$. Well that means we don’t need to do anything.

If $|A| = 2^n$, then A is the powerset of B, which certainly contains 2 sets each of which contains some particular subset of size $n-1$, for example: $(1, \ldots, 1, 0), B$ would work.

If $|A| \geq 2^{n-1}$, we need to show there is some S with $|S| = n-1$ such that it’s contained in at least one set of A. Let T be the total number of digits spanned by elements in A. This means that if any element in B is contained in some set in A, that element will be recorded in T. If $T = n-1$, then A must be the power set of some subset of B of size $n-1$, in which case we can take S to be the biggest element of A. Otherwise $T = B$, which means $B \in A$, and certainly any subset of B of size $n-1$ can be our S.

Finally we deal with $k = n-2$.

We can easily eliminate the $|A| < 2^{n-2}$ and $A = \mathcal{P}(B)$ case as before. So there are three cases left:

$|A| \geq 2^{n-2}$. Here we can use the same argument for $k = n-1$ and $|A| \geq 2^{n-1}$ case before to show there is some $S \subseteq B$ with $|S| = n-2$ such that S is contained in at least one element of A.

$|A| \geq 2^{n-1}$. If the digit span $T < n$, then we will have the powerset of some subset of B of size $n-1$, and in that case we basically reduce to the $|A| = 2^n$ case of $k = n-1$. So we may assume $T = n$, then whatever S we choose in the end, it’s gonna be contained in the largest element of A, namely B.

So we just need to show that besides B, there is at least one other set in A that has size larger than or equal to $n-2$. Suppose within $A \setminus \{B\}$ the set U with largest number of elements has $n-j$ elements, then we can represent it without loss of generality as $(1, \ldots, 1, 0, \ldots, 0)$, with $n-j$ 1’s and j 0’s. Any other set V that contains any of the other elements must contain all of them, since otherwise the union of $U \cup V$ will violate the maximality assumption about U. This eliminates $(2^j - 2)2^{n-j-1}$ of the set of binary sequences of size n, since the last j digits can only be of the form $(0, \ldots, 0)$ or $(1, \ldots, 1)$. Since j is at least 3 if we assume there is no element of size $n-2$ in $A \setminus \{B\}$, we are left with at most 2^{n-2} elements. But $|A|$ is at least $2^{n-1} > 2^{n-2}$, so U must have more than $n-3$ elements. But then U is the other set besides B that contains a subset of size $n-2$. Here we see one important argument which shows the existence of some set of size at least $n-j$ based on the number of sets in A; we call this the minimal length argument.

$|A| \geq 3(2^{n-2})$. Again $T n$. By the minimum length argument, we get that there must exist a set U in $A \setminus \{B\}$ of size $n-1$. Let’s denote it by $(1, \ldots, 1, 0)$. Consider all sets of the form $(x, \ldots, x, 1)$. There are at least 2^{n-2} of them, with equality if and only if all sets of the form $(x, \ldots, x, 0)$ are in A. We want to show that among such sets there is at least one with length $n-1$, for then that set will share a
subset of length $n - 2$ with U, which together will share that subset with B and give us three sets in A containing a subset of length $n - 2$.

We restrict to the first $n - 1$ coordinates (x, \ldots, x), and suppose that the maximum length is $n - 1 - j$, achieved by V. Without loss of generality write $V = (1, \ldots, 1, 0, \ldots, 0)$ with $n - 1 - j$ 1’s and j 0’s. Then by union-closedness of V (since the last entry 1 is attracting), we can eliminate all sequences with the last j digits not equal to either $(0, \ldots, 0)$ or $(1, \ldots, 1)$. That’s $(2^j - 2)2^{n-j-1}$ sequences and we are left with 2^{n-j} entries. Since there are at least 2^{n-2} sequences with last coordinate 1 in A, $j \leq 2$. But in the case $j = 2$, all subsets of V union the last element, i.e., all strings of the form $(x, \ldots, x, 0, 0, 1)$ are in A. And all strings of the form $(x, \ldots, x, 0)$ are in A as well from the last paragraph. So for example $(1, \ldots, 1, 0, 0), (1, \ldots, 1, 0) \in A$. These together with $(1, \ldots, 1)$ give the three sets containing the first $n - 2$ elements of B. Otherwise $j = 1$ and $(1, \ldots, 1, 0, 1) \in A$. This together with $(1, \ldots, 1, 0)$ and $(1, \ldots, 1)$ also finishes the proof.

\qed