Transpose & Dot Product

Def: The *transpose* of an \(m \times n \) matrix \(A \) is the \(n \times m \) matrix \(A^T \) whose columns are the rows of \(A \).

So: The columns of \(A^T \) are the rows of \(A \). The rows of \(A^T \) are the columns of \(A \).

Example: If \(A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \), then \(A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \).

Convention: From now on, vectors \(\mathbf{v} \in \mathbb{R}^n \) will be regarded as “columns” (i.e.: \(n \times 1 \) matrices). Therefore, \(\mathbf{v}^T \) is a “row vector” (a \(1 \times n \) matrix).

Observation: Let \(\mathbf{v}, \mathbf{w} \in \mathbb{R}^n \). Then \(\mathbf{v}^T \mathbf{w} = \mathbf{v} \cdot \mathbf{w} \). This is because:

\[
\mathbf{v}^T \mathbf{w} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} = v_1w_1 + \cdots + v_nw_n = \mathbf{v} \cdot \mathbf{w}.
\]

Where theory is concerned, the key property of transposes is the following:

Prop 18.2: Let \(A \) be an \(m \times n \) matrix. Then for \(\mathbf{x} \in \mathbb{R}^n \) and \(\mathbf{y} \in \mathbb{R}^m \):

\[
(A\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot (A^T \mathbf{y}).
\]

Here, \(\cdot \) is the dot product of vectors.

Extended Example

Let \(A \) be a \(5 \times 3 \) matrix, so \(A : \mathbb{R}^3 \to \mathbb{R}^5 \).

- \(\text{null}(A) \) is a subspace of ______
- \(\text{range}(A) \) is a subspace of ______

The transpose \(A^T \) is a _____ matrix, so \(A^T : ___ \to ___ \)

- \(\text{range}(A^T) \) is a subspace of ______
- \(\text{null}(A^T) \) is a subspace of ______

Observation: Both \(\text{range}(A^T) \) and \(\text{null}(A) \) are subspaces of ______. Might there be a geometric relationship between the two? (No, they’re not equal.) Hm...

Also: Both \(\text{null}(A^T) \) and \(\text{range}(A) \) are subspaces of ______. Might there be a geometric relationship between the two? (Again, they’re not equal.) Hm...
Orthogonal Complements

Def: Let $V \subset \mathbb{R}^n$ be a subspace. The **orthogonal complement** of V is the set

$$V^\perp = \{ x \in \mathbb{R}^n \mid x \cdot v = 0 \text{ for every } v \in V \}.$$

So, V^\perp consists of the vectors which are orthogonal to every vector in V.

Fact: If $V \subset \mathbb{R}^n$ is a subspace, then $V^\perp \subset \mathbb{R}^n$ is a subspace.

Examples in \mathbb{R}^3:
- The orthogonal complement of $V = \{0\}$ is $V^\perp = \mathbb{R}^3$
- The orthogonal complement of $V = \{z\text{-axis}\}$ is $V^\perp = \{xy\text{-plane}\}$
- The orthogonal complement of $V = \{xy\text{-plane}\}$ is $V^\perp = \{z\text{-axis}\}$
- The orthogonal complement of $V = \mathbb{R}^3$ is $V^\perp = \{0\}$

Examples in \mathbb{R}^4:
- The orthogonal complement of $V = \{0\}$ is $V^\perp = \mathbb{R}^4$
- The orthogonal complement of $V = \{w\text{-axis}\}$ is $V^\perp = \{xyz\text{-space}\}$
- The orthogonal complement of $V = \{zw\text{-plane}\}$ is $V^\perp = \{xy\text{-plane}\}$
- The orthogonal complement of $V = \{xyz\text{-space}\}$ is $V^\perp = \{w\text{-axis}\}$
- The orthogonal complement of $V = \mathbb{R}^4$ is $V^\perp = \{0\}$

Prop 19.3-19.4-19.5: Let $V \subset \mathbb{R}^n$ be a subspace. Then:

(a) $\dim(V) + \dim(V^\perp) = n$
(b) $(V^\perp)^\perp = V$
(c) $V \cap V^\perp = \{0\}$
(d) $V + V^\perp = \mathbb{R}^n$.

Part (d) means: “Every vector $x \in \mathbb{R}^n$ can be written as a sum $x = v + w$ where $v \in V$ and $w \in V^\perp$.”

Also, it turns out that the expression $x = v + w$ is unique: that is, there is only one way to write x as a sum of a vector in V and a vector in V^\perp.
Meaning of $C(A^T)$ and $N(A^T)$

Q: What does $C(A^T)$ mean? Well, the columns of A^T are the rows of A. So:

\[
C(A^T) = \text{column space of } A^T = \text{span of columns of } A^T = \text{span of rows of } A.
\]

For this reason: We call $C(A^T)$ the **row space** of A.

Q: What does $N(A^T)$ mean? Well:

\[
x \in N(A^T) \iff A^T x = 0 \iff (A^T x)^T = 0^T \iff x^T A = 0^T.
\]

So, for an $m \times n$ matrix A, we see that: $N(A^T) = \{x \in \mathbb{R}^m \mid x^T A = 0^T\}$.

For this reason: We call $N(A^T)$ the **left null space** of A.

Relationships among the Subspaces

Theorem: Let A be an $m \times n$ matrix. Then:

- $C(A^T) = N(A)^\perp$
- $N(A^T) = C(A)^\perp$

Corollary: Let A be an $m \times n$ matrix. Then:

- $C(A) = N(A^T)^\perp$
- $N(A) = C(A^T)^\perp$

Prop 18.3: Let A be an $m \times n$ matrix. Then $\text{rank}(A) = \text{rank}(A^T)$.

Motivating Questions for Reading

Problem 1: Let $b \in C(A)$. So, the system of equations $Ax = b$ does have solutions, possibly infinitely many.

Q: What is the solution x of $Ax = b$ with $\|x\|$ the smallest?

Problem 2: Let $b \notin C(A)$. So, the system of equations $Ax = b$ does not have any solutions. In other words, $Ax - b \neq 0$.

Q: What is the vector x that minimizes the error $\|Ax - b\|$? That is, what is the vector x that comes closest to being a solution to $Ax = b$?
Orthogonal Projection

Def: Let \(V \subset \mathbb{R}^n \) be a subspace. Then every vector \(x \in \mathbb{R}^n \) can be written uniquely as

\[
x = v + w, \text{ where } v \in V \text{ and } w \in V^\perp.
\]

The **orthogonal projection** onto \(V \) is the function \(\text{Proj}_V : \mathbb{R}^n \rightarrow \mathbb{R}^n \) given by: \(\text{Proj}_V(x) = v \). (Note that \(\text{Proj}_{V^\perp}(x) = w \).)

Prop 20.1: Let \(V \subset \mathbb{R}^n \) be a subspace. Then:

\[
\text{Proj}_V + \text{Proj}_{V^\perp} = I_n.
\]

Of course, we already knew this: We have \(x = v + w = \text{Proj}_V(x) + \text{Proj}_{V^\perp}(x) \).

Formula: Let \(\{v_1, \ldots, v_k\} \) be a basis of \(V \subset \mathbb{R}^n \). Let \(A \) be the \(n \times k \) matrix

\[
A = \begin{bmatrix}
v_1 \\
\vdots \\
v_k
\end{bmatrix}.
\]

Then:

\[
\text{Proj}_V = A(A^T A)^{-1} A^T. \quad (\ast)
\]

Geometry Observations: Let \(V \subset \mathbb{R}^n \) be a subspace, and \(x \in \mathbb{R}^n \) a vector.

1. The distance from \(x \) to \(V \) is: \(\|\text{Proj}_{V^\perp}(x)\| = \|x - \text{Proj}_V(x)\| \).
2. The vector in \(V \) that is closest to \(x \) is: \(\text{Proj}_V(x) \).

Derivation of \((\ast)\): Notice \(\text{Proj}_V(x) \) is a vector in \(V = \text{span}(v_1, \ldots, v_k) = C(A) = \text{Range}(A) \), and therefore \(\text{Proj}_V(x) = Ay \) for some vector \(y \in \mathbb{R}^k \).

Now notice that \(x - \text{Proj}_V(x) = x - Ay \) is a vector in \(V^\perp = C(A)^\perp = N(A^T) \), which means that \(A^T(x - Ay) = 0 \), which means \(A^T x = A^T Ay \).

Now, it turns out that our matrix \(A^T A \) is invertible (proof in L20), so we get \(y = (A^T A)^{-1} A^T x \).

Thus, \(\text{Proj}_V(x) = Ay = A(A^T A)^{-1} A^T x \). \(\diamond \)
Minimum Magnitude Solution

Prop 19.6: Let $b \in C(A)$ (so $Ax = b$ has solutions). Then there exists exactly one vector $x_0 \in C(A^T)$ with $Ax_0 = b$.

And: Among all solutions of $Ax = b$, the vector x_0 has the smallest length.

In other words: There is exactly one vector x_0 in the row space of A which solves $Ax = b$ – and this vector is the solution of smallest length.

To Find x_0: Start with any solution x of $Ax = b$. Then

$$x_0 = \text{Proj}_{C(A^T)}(x).$$

Least Squares Approximation

Idea: Suppose $b \notin C(A)$. So, $Ax = b$ has no solutions, so $Ax - b \neq 0$.

We want to find the vector x^* which minimizes the error $\|Ax^* - b\|$. That is, we want the vector x^* for which Ax^* is the closest vector in $C(A)$ to b.

In other words, we want the vector x^* for which $Ax^* - b$ is orthogonal to $C(A)$. So, $Ax^* - b \in C(A)^\perp = N(A^T)$, meaning that $A^T(Ax^* - b) = 0$, i.e.:

$$A^T A x^* = A^T b.$$

Quadratic Forms (Intro)

Given an $m \times n$ matrix A, we can regard it as a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$. In the special case where the matrix A is a symmetric matrix, we can also regard A as defining a “quadratic form”:

Def: Let A be a symmetric $n \times n$ matrix. The quadratic form associated to A is the function $Q_A: \mathbb{R}^n \to \mathbb{R}$ given by:

$$Q_A(x) = x \cdot Ax \quad (\cdot \text{ is the dot product})$$

$$= x^T A x = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Notice that quadratic forms are not linear transformations!
Orthonormal Bases

Def: A basis \(\{w_1, \ldots, w_k\} \) for a subspace \(V \) is an **orthonormal basis** if:

1. The basis vectors are mutually orthogonal: \(w_i \cdot w_j = 0 \) (for \(i \neq j \));
2. The basis vectors are unit vectors: \(w_i \cdot w_i = 1 \). (i.e.: \(\|w_i\| = 1 \))

Orthonormal bases are nice for (at least) two reasons:

(a) It is much easier to find the \(B \)-coordinates \([v]_B \) of a vector when the basis \(B \) is orthonormal;
(b) It is much easier to find the **projection matrix** onto a subspace \(V \) when we have an orthonormal basis for \(V \).

Prop: Let \(\{w_1, \ldots, w_k\} \) be an orthonormal basis for a subspace \(V \subset \mathbb{R}^n \).

(a) Every vector \(v \in V \) can be written
\[
y = (v \cdot w_1)w_1 + \cdots + (v \cdot w_k)w_k.
\]
(b) For all \(x \in \mathbb{R}^n \):
\[
\text{Proj}_V(x) = (x \cdot w_1)w_1 + \cdots + (x \cdot w_k)w_k.
\]
(c) Let \(A \) be the matrix with columns \(\{w_1, \ldots, w_k\} \). Then \(A^T A = I_k \), so:
\[
\text{Proj}_V = A(A^T A)^{-1}A^T = AA^T.
\]

Orthogonal Matrices

Def: An **orthogonal matrix** is an invertible matrix \(C \) such that
\[
C^{-1} = C^T.
\]

Example: Let \(\{v_1, \ldots, v_n\} \) be an orthonormal basis for \(\mathbb{R}^n \). Then the matrix
\[
C = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}
\]
is an orthogonal matrix.

In fact, **every** orthogonal matrix \(C \) looks like this: the columns of any orthogonal matrix form an orthonormal basis of \(\mathbb{R}^n \).

Where theory is concerned, the key property of orthogonal matrices is:

Prop 22.4: Let \(C \) be an orthogonal matrix. Then for \(v, w \in \mathbb{R}^n \):
\[
Cv \cdot Cw = v \cdot w.
\]
Gram-Schmidt Process

Since orthonormal bases have so many nice properties, it would be great if we had a way of actually manufacturing orthonormal bases. That is:

Goal: We are given a basis \(\{v_1, \ldots, v_k\}\) for a subspace \(V \subset \mathbb{R}^n\). We would like an *orthonormal* basis \(\{w_1, \ldots, w_k\}\) for our subspace \(V\).

Notation: We will let

\[
V_1 = \text{span}(v_1) \\
V_2 = \text{span}(v_1, v_2) \\
\vdots \\
V_k = \text{span}(v_1, \ldots, v_k) = V.
\]

Idea: Build an orthonormal basis for \(V_1\), then for \(V_2, \ldots\), up to \(V_k = V\).

Gram-Schmidt Algorithm: Let \(\{v_1, \ldots, v_k\}\) be a basis for \(V \subset \mathbb{R}^n\).

1. Define \(w_1 = \frac{v_1}{\|v_1\|}\).
2. Having defined \(\{w_1, \ldots, w_j\}\), let

\[
y_{j+1} = v_{j+1} - \text{Proj}_{V_j}(v_{j+1}) \\
= v_{j+1} - (v_{j+1} \cdot w_1)w_1 - (v_{j+1} \cdot w_2)w_2 - \cdots - (v_{j+1} \cdot w_j)w_j,
\]

and define \(w_{j+1} = \frac{y_{j+1}}{\|y_{j+1}\|}\).

Then \(\{w_1, \ldots, w_k\}\) is an orthonormal basis for \(V\).
Definiteness

Def: Let \(Q : \mathbb{R}^n \to \mathbb{R} \) be a quadratic form.

We say \(Q \) is **positive definite** if \(Q(x) > 0 \) for all \(x \neq 0 \).

We say \(Q \) is **negative definite** if \(Q(x) < 0 \) for all \(x \neq 0 \).

We say \(Q \) is **indefinite** if there are vectors \(x \) for which \(Q(x) > 0 \), and also vectors \(x \) for which \(Q(x) < 0 \).

Def: Let \(A \) be a symmetric matrix.

We say \(A \) is **positive definite** if \(Q_A(x) = x^T A x > 0 \) for all \(x \neq 0 \).

We say \(A \) is **negative definite** if \(Q_A(x) = x^T A x < 0 \) for all \(x \neq 0 \).

We say \(A \) is **indefinite** if there are vectors \(x \) for which \(x^T A x > 0 \), and also vectors \(x \) for which \(x^T A x < 0 \).

In other words:

\(\circ \) \(A \) is positive definite \(\iff \) \(Q_A \) is positive definite.

\(\circ \) \(A \) is negative definite \(\iff \) \(Q_A \) is negative definite.

\(\circ \) \(A \) is indefinite \(\iff \) \(Q_A \) is indefinite.

The Hessian

Def: Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a function. Its **Hessian** at \(a \in \mathbb{R}^n \) is the symmetric matrix of second partials:

\[
H_f(a) = \begin{bmatrix}
 f_{x_1 x_1}(a) & \cdots & f_{x_1 x_n}(a) \\
 \vdots & \ddots & \vdots \\
 f_{x_n x_1}(a) & \cdots & f_{x_n x_n}(a)
\end{bmatrix}.
\]

Note that the Hessian is a symmetric matrix. Therefore, we can also regard \(H_f(a) \) as a quadratic form:

\[
Q_{H_f(a)}(x) = x^T H_f(a) x = [x_1 \cdots x_n] \begin{bmatrix}
 f_{x_1 x_1}(a) & \cdots & f_{x_1 x_n}(a) \\
 \vdots & \ddots & \vdots \\
 f_{x_n x_1}(a) & \cdots & f_{x_n x_n}(a)
\end{bmatrix} [x_1 \cdots x_n].
\]

In particular, it makes sense to ask whether the Hessian is positive definite, negative definite, or indefinite.
Single-Variable Calculus Review

Recall: In calculus, you learned that for a function \(f : \mathbb{R} \to \mathbb{R} \), a critical point is a point \(a \in \mathbb{R} \) where \(f'(a) = 0 \) or \(f'(a) \) does not exist.

You learned that if \(f(x) \) has a local min/max at \(x = a \), then \(x = a \) is a critical point. Of course, the converse is false: critical points don’t have to be local minima or local maxima (e.g., they could be inflection points.)

You also learned the “second derivative test.” If \(x = a \) is a critical point for \(f(x) \), then \(f''(a) > 0 \) tells us that \(x = a \) is a local min, whereas \(f''(a) < 0 \) tells us that \(x = a \) is a local max.

It would be nice to have similar statements in higher dimensions:

Critical Points & Second Derivative Test

Def: A critical point of \(f : \mathbb{R}^n \to \mathbb{R} \) is a point \(a \in \mathbb{R}^n \) at which \(Df(a) = 0^T \) or \(Df(a) \) is undefined.

In other words, each partial derivative \(\frac{\partial f}{\partial x_i}(a) \) is zero or undefined.

Theorem: If \(f : \mathbb{R}^n \to \mathbb{R} \) has a local max / local min at \(a \in \mathbb{R}^n \), then \(a \) is a critical point of \(f \).

N.B.: The converse of this theorem is false! Critical points do not have to be a local max or local min – e.g., they could be saddle points.

Def: A saddle point of \(f : \mathbb{R}^n \to \mathbb{R} \) is a critical point of \(f \) that is not a local max or local min.

Second Derivative Test: Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a function, and \(a \in \mathbb{R}^n \) be a critical point of \(f \).

(a) If \(Hf(a) \) is positive definite, then \(a \) is a local min of \(f \).
(b) If \(Hf(a) \) is positive semi-definite, then \(a \) is local min or saddle point.
(c) If \(Hf(a) \) is negative definite, then \(a \) is a local max of \(f \).
(d) If \(Hf(a) \) is negative semi-definite, then \(a \) is local max or saddle point.
(e) If \(Hf(a) \) is indefinite, then \(a \) is a saddle point of \(f \).
Local Extrema vs Global Extrema

Finding Local Extrema: We want to find the local extrema of a function $f: \mathbb{R}^n \to \mathbb{R}$.

(i) Find the critical points of f.
(ii) Use the Second Derivative Test to decide if the critical points are local maxima / minima / saddle points.

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. If $R \subset \mathbb{R}^n$ is a closed and bounded region, then f has a global max and a global min on R.

Finding Global Extrema: We want to find the global extrema of a function $f: \mathbb{R}^n \to \mathbb{R}$ on a region $R \subset \mathbb{R}^n$.

(1) Find the critical points of f on the interior of R.
(2) Find the extreme values of f on the boundary of R. (Lagrange mult.)

Then:
- The largest value from Steps (1)-(2) is a global max value.
- The smallest value from Steps (1)-(2) is a global min value.

Lagrange Multipliers (Constrained Optimization)

Notation: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function, and $S \subset \mathbb{R}^n$ be a subset.

The *restricted function* $f|_S: S \to \mathbb{R}^m$ is the same exact function as f, but where the domain is restricted to S.

Theorem: Suppose we want to optimize a function $f(x_1, \ldots, x_n)$ constrained to a level set $S = \{g(x_1, \ldots, x_n) = c\}$.

If a is an extreme value of $f|_S$ on the level set $S = \{g(x_1, \ldots, x_n) = c\}$, and if $\nabla g(a) \neq 0$, then

$$\nabla f(a) = \lambda \nabla g(a)$$

for some constant λ.

Reason: If a is an extreme value of $f|_S$ on the level set S, then $D_v f(a) = 0$ for all vectors v that are tangent to the level set S. Therefore, $\nabla f(a) \cdot v = 0$ for all vectors v that are tangent to S.

This means that $\nabla f(a)$ is orthogonal to the level set S, so $\nabla f(a)$ must be a scalar multiple of the normal vector $\nabla g(a)$. That is, $\nabla f(a) = \lambda \nabla g(a)$. □
Motivation for Eigenvalues & Eigenvectors

We want to understand a quadratic form $Q_A(x)$, which might be ugly and complicated.

Idea: Maybe there’s an orthonormal basis $B = \{w_1, \ldots, w_n\}$ of \mathbb{R}^n that is somehow “best suited to A” – so that with respect to the basis B, the quadratic form Q_A looks simple.

What do we mean by “basis suited to A”? And does such a basis always exist? Well:

Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there exists an orthonormal basis $B = \{w_1, \ldots, w_n\}$ of \mathbb{R}^n such that each w_1, \ldots, w_n is an eigenvector of A.

i.e.: There is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.

Why is this good? Well, since B is a basis, every $w \in \mathbb{R}^n$ can be written $w = u_1w_1 + \cdots + u_nw_n$. (That is, the B-coordinates of w are (u_1, \ldots, u_n).)

It then turns out that:

$$Q_A(w) = Q_A(u_1w_1 + \cdots + u_nw_n)$$
$$= (u_1w_1 + \cdots + u_nw_n) \cdot A(u_1w_1 + \cdots + u_nw_n)$$
$$= \lambda_1(u_1)^2 + \lambda_2(u_2)^2 + \cdots + \lambda_n(u_n)^2.$$ (yay!)

In other words: the quadratic form Q_A is in diagonal form with respect to the basis B. We have made Q_A look as simple as possible!

Also: the coefficients $\lambda_1, \ldots, \lambda_n$ are exactly the eigenvalues of A.

Corollary: Let A be a symmetric $n \times n$ matrix, with eigenvalues $\lambda_1, \ldots, \lambda_n$.

(a) A is positive-definite \iff all of $\lambda_1, \ldots, \lambda_n$ are positive.

(b) A is negative-definite \iff all of $\lambda_1, \ldots, \lambda_n$ are negative.

(c) A is indefinite \iff there is a positive eigenvalue $\lambda_i > 0$ and a negative eigenvalue $\lambda_j < 0$.

Useful Fact: Let A be any $n \times n$ matrix, with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then

$$\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n.$$

Cor: If any one of the eigenvalues $\lambda_j = 0$ is zero, then $\det(A) = 0$.
What is a (Unit) Sphere?

- The **1-sphere** (the “unit circle”) is \(S^1 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \} \subset \mathbb{R}^2 \).
- The **2-sphere** (the “sphere”) is \(S^2 = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \} \subset \mathbb{R}^3 \).
- The **3-sphere** is \(S^3 = \{ (x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + w^2 = 1 \} \subset \mathbb{R}^4 \).

Note that the 3-sphere is *not* the same as the unit ball \(\{ x^2 + y^2 + z^2 \leq 1 \} \).

- The \((n-1)\)-sphere is the set
 \[
 S^{n-1} = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n \mid (x_1)^2 + \cdots + (x_n)^2 = 1 \}
 = \{ x \in \mathbb{R}^n \mid \| x \|^2 = 1 \} \subset \mathbb{R}^n.
 \]
In other words, \(S^{n-1} \) consists of the unit vectors in \(\mathbb{R}^n \).

Optimizing Quadratic Forms on Spheres

Problem: Optimize a quadratic form \(Q_A : \mathbb{R}^n \to \mathbb{R} \) on the sphere \(S^{n-1} \subset \mathbb{R}^n \).
That is, what are the maxima and minima of \(Q_A(w) \) subject to the constraint that \(\| w \| = 1 \)?

Solution: Let \(\lambda_{\text{max}} \) and \(\lambda_{\text{min}} \) be the largest and smallest eigenvalues of \(A \).

- The maximum value of \(Q_A \) for unit vectors is \(\lambda_{\text{max}} \). Any unit vector \(w_{\text{max}} \) which attains this maximum is an eigenvector of \(A \) with eigenvalue \(\lambda_{\text{max}} \).
- The minimum value of \(Q_A \) for unit vectors is \(\lambda_{\text{min}} \). Any unit vector \(w_{\text{min}} \) which attains this minimum is an eigenvector of \(A \) with eigenvalue \(\lambda_{\text{min}} \).

Corollary: Let \(A \) be a symmetric \(n \times n \) matrix.

- \(A \) is positive-definite \(\iff \) the minimum value of \(Q_A \) restricted to unit vector inputs is positive (i.e., iff \(\lambda_{\text{min}} > 0 \)).
- \(A \) is negative-definite \(\iff \) the maximum value of \(Q_A \) restricted to unit vector inputs is negative (i.e., iff \(\lambda_{\text{max}} < 0 \)).
- \(A \) is indefinite \(\iff \lambda_{\text{max}} > 0 \) and \(\lambda_{\text{min}} < 0 \).
Directional First & Second Derivatives

Def: Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a function, \(a \in \mathbb{R}^n \) be a point.

The **directional derivative** of \(f \) at \(a \) in the direction \(v \) is:

\[
D_v f(a) = \nabla f(a) \cdot v.
\]

The “**directional second derivative**” of \(f \) at \(a \) in the direction \(v \) is:

\[
Q_{Hf(a)}(v) = v^T Hf(a)v.
\]

That is: the quadratic form whose associated matrix is the Hessian \(Hf(a) \).

Q: What direction \(v \) increases the directional derivative the most? What direction \(v \) decreases the directional derivative the most?

A: We’ve learned this: the gradient \(\nabla f(a) \) is the direction of greatest increase, whereas \(-\nabla f(a) \) is the direction of greatest decrease.

New Questions:
- What direction \(v \) increases the directional **second** derivative the most?
- What direction \(v \) decreases the directional **second** derivative the most?

Answer: The (unit) directions of minimum and maximum second derivative are (unitized) eigenvectors of \(Hf(a) \), and so they are *mutually orthogonal*.

The max/min values of the directional second derivative are the max/min eigenvalues of \(Hf(a) \).