Laplace Transform: Examples

Def: Given a function f(t) defined for t > 0. Its **Laplace transform** is the function, denoted $F(s) = \mathcal{L}{f}(s)$, defined by:

$$F(s) = \mathcal{L}{f}(s) = \int_0^\infty e^{-st} f(t) \, dt.$$

(Issue: The Laplace transform is an improper integral. So, does it always exist? i.e.: Is the function F(s) always finite? Answer: This is a little subtle. We'll discuss this next time.)

Fact (Linearity): The Laplace transform is linear:

$$\mathcal{L}\{c_1f_1(t) + c_2f_2(t)\} = c_1\mathcal{L}\{f_1(t)\} + c_2\mathcal{L}\{f_2(t)\},$$

Example 1: $\mathcal{L}{1} = \frac{1}{s}$ Example 2: $\mathcal{L}{e^{at}} = \frac{1}{s-a}$ Example 3: $\mathcal{L}{\sin(at)} = \frac{a}{s^2 + a^2}$ Example 4: $\mathcal{L}{\cos(at)} = \frac{s}{s^2 + a^2}$ Example 5: $\mathcal{L}{t^n} = \frac{n!}{s^{n+1}}$

Useful Fact: Euler's Formula says that

$$e^{it} = \cos t + i \sin t$$
$$e^{-it} = \cos t - i \sin t$$

Therefore,

$$\cos t = \frac{1}{2}(e^{it} + e^{-it}), \qquad \sin t = \frac{1}{2i}(e^{it} - e^{-it}).$$

Laplace Transform: Key Properties

Recall: Given a function f(t) defined for t > 0. Its **Laplace transform** is the function, denoted $F(s) = \mathcal{L}{f}(s)$, defined by:

$$F(s) = \mathcal{L}{f}(s) = \int_0^\infty e^{-st} f(t) \, dt.$$

Notation: In the following, let $F(s) = \mathcal{L}{f(t)}$.

Fact A: We have

$$\mathcal{L}\{e^{at}f(t)\} = F(s-a).$$

Fact B (Magic): Derivatives in $t \rightarrow$ Multiplication by s (well, almost).

$$\mathcal{L}\{f'(t)\} = \binom{s}{1} \cdot \binom{F(s)}{-f(0)} = sF(s) - f(0)$$

$$\mathcal{L}\{f''(t)\} = \binom{s^2}{s} \cdot \binom{F(s)}{-f(0)} = s^2F(s) - sf(0) - f'(0)$$

$$\mathcal{L}\{f^{(n)}(t)\} = \binom{s^n}{s^{n-1}} \cdot \binom{F(s)}{-f'(0)} \cdot \binom{-f(0)}{\cdots} = s^nF(s) - s^{n-1}f(0) - \cdots - sf^{(n-2)}(0) - f^{(n-1)}(0).$$

Fact C (Magic): Multiplication by $t \to \text{Derivatives in } s$ (almost).

$$\mathcal{L}{tf(t)} = -F'(s)$$

$$\mathcal{L}{t^n f(t)} = (-1)^n F^{(n)}(s).$$

Laplace Transform: Existence

Recall: Given a function f(t) defined for t > 0. Its **Laplace transform** is the function defined by:

$$F(s) = \mathcal{L}{f}(s) = \int_0^\infty e^{-st} f(t) \, dt.$$

Issue: The Laplace transform is an improper integral. So, does it always exist? i.e.: Is the function F(s) always finite?

Def: A function f(t) is of **exponential order** if there is a threshold $M \ge 0$ and constants $K > 0, a \in \mathbb{R}$ such that

$$|f(t)| \le Ke^{at}$$
, when $t \ge M$.

Equivalently: There is a threshold $M \ge 0$ and a constant $a \in \mathbb{R}$ such that the function $\frac{f(t)}{e^{at}}$ is **bounded** when $t \ge M$ (meaning that $\left|\frac{f(t)}{e^{at}}\right| \le K$).

Theorem: Let f(t) be a function that is:

(1) continuous;

(2) of exponential order (with exponent a). Then:

(a)
$$F(s) = \mathcal{L}{f(t)}(s)$$
 exists for all $s > a$; and

(b)
$$\lim_{s \to \infty} F(s) = 0.$$

Example: The function $f(t) = \exp(t^2)$ is not of exponential order.

Remark: If f(t) is not continuous, or not of exponential order, then the Laplace transform may or may not exist.

Inverse Laplace Transform: Existence

Want: A notion of "inverse Laplace transform." That is, we would like to say that if $F(s) = \mathcal{L}{f(t)}$, then $f(t) = \mathcal{L}^{-1}{F(s)}$.

Issue: How do we know that \mathcal{L} even has an inverse \mathcal{L}^{-1} ? Remember, not all operations have inverses.

To see the problem: imagine that there are different functions f(t) and g(t) which have the same Laplace transform $H(s) = \mathcal{L}{f} = \mathcal{L}{g}$. Then $\mathcal{L}^{-1}{H(s)}$ would make no sense: after all, should $\mathcal{L}^{-1}{H}$ be f(t) or g(t)?

Fortunately, this bad scenario can never happen:

Theorem: Let f(t), g(t) be continuous functions on $[0, \infty)$ of exponential order. If $\mathcal{L}{f} = \mathcal{L}{g}$, then f(t) = g(t) for all $t \in [0, \infty)$.

Def: Let f(t) be continuous on $[0, \infty)$ and of exponential order.

We call f(t) the **inverse Laplace transform** of $F(s) = \mathcal{L}{f(t)}$. We write $f = \mathcal{L}^{-1}{F}$.

Fact (Linearity): The inverse Laplace transform is linear:

$$\mathcal{L}^{-1}\{c_1F_1(s) + c_2F_2(s)\} = c_1 \mathcal{L}^{-1}\{F_1(s)\} + c_2 \mathcal{L}^{-1}\{F_2(s)\}.$$

Inverse Laplace Transform: Examples

Example 1: $\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at}$ Example 2: $\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^n}\right\} = e^{at}\frac{t^{n-1}}{(n-1)!}$ Example 3: $\mathcal{L}^{-1}\left\{\frac{s}{s^2+b^2}\right\} = \cos bt$ Example 4: $\mathcal{L}^{-1}\left\{\frac{1}{s^2+b^2}\right\} = \frac{1}{b}\sin bt$ Fact A: We have $\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$. Therefore:

$$\mathcal{L}^{-1}\{F(s-a)\} = e^{at} \mathcal{L}^{-1}\{F(s)\}.$$

Partial Fractions

Setup: Given a rational function

$$R(x) = \frac{p(x)}{q(x)}.$$

Saying that R is rational means that both p and q are polynomials.

Begin by factoring the denominator q(x) over \mathbb{R} . (The phrase "over \mathbb{R} " means, e.g., that $x^3 + 4x$ factors as $x(x^2 + 4)$. That is, we do not allow complex numbers. Factoring into x(x+2i)(x-2i) would be factoring "over \mathbb{C} .")

Case 1: q(x) has linear distinct factors, meaning that we can express $q(x) = (x - a_1) \cdots (x - a_n)$. In this case, we write

$$\frac{p(x)}{q(x)} = \frac{A_1}{x - a_1} + \dots + \frac{A_n}{x - a_n}$$

Case 2: q(x) has linear factors, where some are repeated. Corresponding to this factor like $(x - a)^p$, we write

$$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_p}{(x-a)^p}.$$

Case 3: q(x) has a quadratic factor, not repeated. Corresponding to a factor like $(x - (\mu + i\nu))(x - (\mu - i\nu)) = (x - \mu)^2 + \nu^2$, we write

$$\frac{A(x-\mu) + B\nu}{(x-\mu)^2 + \nu^2}$$

Case 4: q(x) has repeated quadratic factors. Corresponding to a factor like $((x - \mu)^2 + \nu^2)^n$, we write

$$\frac{A_1(x-\mu)+B_1\nu}{(x-\mu)^2+\nu^2}+\frac{A_2(x-\mu)+B_2\nu}{((x-\mu)^2+\nu^2)^2}+\cdots+\frac{A_n(x-\mu)+B_n\nu}{((x-\mu)^2+\nu^2)^n}.$$

Example: Here is a partial fraction decomposition:

$$\frac{7x^3 + 2}{(x-3)^2(x^2+25)^2} = \frac{A}{x-3} + \frac{B}{(x-3)^2} + \frac{Cx+5D}{x^2+25} + \frac{Ex+5F}{(x^2+25)^2}.$$

Review: Intro to Power Series

A **power series** is a series of the form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$

It can be thought of as an "infinite polynomial."

The number x_0 is called the **center**.

A power series may converge for some values of x, but diverge for other values of x. A power series will *always* converge at its center $x = x_0$ (do you see why?).

Question: Given a power series, for what values of x does it converge, and for what values of x does it diverge?

Theorem: Given a power series $\sum a_n(x-x_0)^n$. Then either:

(i) The power series converges only at $x = x_0$. (Case R = 0)

(ii) The power series converges for all $x \in \mathbb{R}$. (Case $R = +\infty$)

(iii) The power series converges on an interval $|x - x_0| < R$, and diverges if $|x - x_0| > R$.

The number R is called the **radius of convergence**.

Note: This theorem says nothing about the convergence/divergence at the endpoints of the interval. Those have to be checked separately.

Finding the Interval of Convergence:

- (1) Determine the center x_0 .
- (2) Determine the radius of convergence R. Use the Ratio Test to do this.
- (3) Check convergence/divergence at the endpoints.

Review: Power Series are Functions

Given a power series $\sum a_n(x-x_0)^n$, we can think of it as a function of x:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Domain of f(x): The set of all x-values for which the series converges. That is, the domain is exactly the interval of convergence.

Although every power series (with R > 0) is a function, not all functions arise in this way. i.e.: Not all functions are equal to a convergent power series! Those functions which are have a special name:

Def: A function f(x) is **analytic** at $x = x_0$ if it is equal to a power series

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

that has *positive* radius of convergence R > 0.

Analytic functions are the best-behaved functions in all of calculus. For example, every analytic function is infinitely-differentiable:

Theorem: Let f(x) be analytic at x_0 , say $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ with radius

of convergence R > 0. Then:

- (a) f is infinitely-differentiable on the interval $(x_0 R, x_0 + R)$.
- (b) The derivative of f is:

$$f'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$$
 (*)

(c) The indefinite integral of f is:

$$\int f(x) \, dx = C + \sum_{n=0}^{\infty} a_n \frac{(x - x_0)^{n+1}}{n+1} \tag{(†)}$$

(d) The radii of convergence of (*) and (\dagger) are both R.

Note: Again, this theorem says nothing about convergence/divergence at the endpoints. Those have to be checked separately.

Review: Taylor Series

Recall that a **power series** is any series of the form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$

Def: Let f(x) be infinitely-differentiable on an interval $|x - x_0| < R$. The **Taylor series of** f at $x = x_0$ is the power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \cdots$$

So, by definition: every Taylor series is a power series.

Conversely, every power series with R > 0 is a Taylor series:

Theorem: If $f(x) = \sum a_n (x - x_0)^n$ is a power series with radius of convergence R > 0, then

$$a_n = \frac{f^{(n)}(x_0)}{n!}.$$

(So: The given power series $\sum a_n (x-x_0)^n$ is exactly the Taylor series of f(x).)

Corollary: If f(x) is analytic at x_0 , then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

So: If f is analytic at $x = x_0$, then the Taylor series of f does converge to f.

There **are** functions infinitely-differentiable at x_0 but **not** analytic at x_0 . For those functions, the Taylor series at x_0 will only equal f(x) at $x = x_0$ even if the Taylor series converges on an interval $(x_0 - R, x_0 + R)!$

Classic Scary Example: The function $f(x) = \begin{cases} \exp(-\frac{1}{x^2}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$ is infinitely-differentiable on all of \mathbb{R} . Its derivatives at x = 0 are $f^{(n)}(0) = 0$ for each $n = 0, 1, 2, \ldots$ Therefore, its Taylor series at x = 0 is

$$0 + \frac{0}{1!}x + \frac{0}{2!}x^2 + \cdots$$

which converges on all of \mathbb{R} to the function g(x) = 0.

Point: Our function f(x) (which is defined on all of \mathbb{R}) is only equal to its Taylor series (which is also defined on all of \mathbb{R}) at x = 0. Weird!

Review: Examples of Taylor Series

Many of the functions we care about are analytic, meaning that they are equal to a power series. For example:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
$$\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$
$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

It's also good to know about

$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$
$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$

Again: If f(x) is analytic, meaning that it is equal to a power series, then that power series is the Taylor series of f(x).

Review: Taylor Polynomials

Def: The *n*th-degree Taylor polynomial of f(x) is the polynomial

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Main Point of Taylor Series: The Taylor polynomials $T_n(x)$ are the best polynomial approximations to f(x) near the center $x = x_0$.

Example: The first Taylor polynomial

$$T_1(x) = f(x_0) + f'(x_0)(x - x_0)$$

is the best linear approximation near $x = x_0$. After all, $T_1(x)$ is exactly the tangent line to f(x) at $x = x_0$.

Similarly: The second Taylor polynomial

$$T_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

is the "tangent parabola" at $x = x_0$. Et cetera.

Series Solutions to ODEs: Ordinary Points

Goal: Given a 2nd-order linear ODE (with non-constant coefficients)

$$y'' + p(x)y' + q(x)y = 0.$$

We usually cannot solve for y(x) explicitly.

Hope: Maybe we can express y(x) as a power series: $y(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$. If we can do this, then the partial sums (i.e.: the Taylor polynomials) are

Def: Given a 2nd-order linear ODE

polynomial approximations to y(x).

$$y'' + p(x)y' + q(x)y = 0.$$

A point x_0 is a **ordinary point** if both p(x), q(x) are analytic at x_0 . A point x_0 is a **singular point** otherwise.

Theorem: Given a 2nd-order linear ODE

$$y'' + p(x)y' + q(x)y = 0.$$

Suppose that x_0 is an ordinary point.

Then the general solution may be written as a power series

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 y_1(x) + a_1 y_2(x),$$

where a_0, a_1 are arbitrary constants, and $y_1(x), y_2(x)$ are power-series solutions (and hence analytic at x_0). Moreover, $\{y_1(x), y_2(x)\}$ is a fundamental set of solutions.

Also: the radii of convergence for the series solutions of $y_1(x), y_2(x)$ are at least the minimum of the radii of convergence of the series for p(x) and q(x).

Fourier Series: Intro

Recall: A power series is an "infinite polynomial."

Given a function f(x), the **Taylor series of** f(x) is a power series where the coefficients are determined by some formula $(a_n = \frac{f^{(n)}(x_0)}{n!})$.

Often, the Taylor series of f(x) does converge to f(x). So, Taylor series let us approximate f(x) by a sequence of polynomials.

Today: A trigonometric series is an "infinite trig polynomial."

Given a function f(x), the Fourier series of f(x) is a trigonometric series where the coefficients are determined by some formula (below).

Often, the Fourier series of f(x) does converge to f(x). So, Fourier series let us approximate f(x) by a sequence of "waves."

Def: A trigonometric series is an infinite series of the form

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi}{L}x\right) + b_n \sin\left(\frac{n\pi}{L}x\right) \right).$$

Given a function f(x), its **Fourier series** is the trigonometric series whose coefficients are given by:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi}{L}x\right) dx \tag{A}$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi}{L}x\right) dx.$$
 (B)

So, every Fourier series is a trigonometric series. Conversely, every convergent trigonometric series is a Fourier series:

Fact: If
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi}{L}x\right) + b_n \sin\left(\frac{n\pi}{L}x\right) \right)$$
 is a trigonometric series which converges, then its coefficients a_n, b_n are given by (A)-(B) above.

Fourier Convergence Theorem: Suppose f(x) is periodic of period 2L. Suppose also that f(x) and f'(x) are piecewise-continuous on [-L, L).

Then the Fourier series of f converges to f(x) at all points where f is continuous. It converges to $\frac{1}{2}[f(x+)+f(x-)]$ at all points where f is discontinuous.

Linear Algebra Review: Orthogonal Bases

Recall: A basis $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ for a subspace $V \subset \mathbb{R}^n$ is **orthogonal** if: • The basis vectors are mutually orthogonal: $\mathbf{w}_i \cdot \mathbf{w}_j = 0$ (for $i \neq j$).

Given a basis \mathcal{B} , it is generally a pain to find the \mathcal{B} -coordinates of a given vector. But when \mathcal{B} is an *orthogonal* basis, there is a very simple formula:

Fact: Let $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ be an orthogonal basis for a subspace $V \subset \mathbb{R}^n$.

Then every vector $\mathbf{y} \in V$ can be written:

$$\mathbf{y} = rac{\mathbf{y} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \dots + rac{\mathbf{y} \cdot \mathbf{w}_k}{\mathbf{w}_k \cdot \mathbf{w}_k} \mathbf{w}_k$$

This is sometimes called the **Fourier expansion** of $\mathbf{y} \in V$. Hmm.....

Fourier Series: A Powerful Geometric Perspective

Def: The inner product of two functions f(x), g(x) on an interval [a, b] is:

$$(f,g) = \int_a^b f(x)g(x) \, dx.$$

We say that f(x) and g(x) are **orthogonal functions** if (f,g) = 0.

A set of functions $f_1(x), f_2(x), \ldots$ is an **orthogonal set** of functions if every pair in the set is orthogonal: $(f_i, f_j) = 0$ for $i \neq j$.

Fact: Consider the functions

$$v_n(x) = \cos\left(\frac{n\pi}{L}x\right), \quad w_n(x) = \sin\left(\frac{n\pi}{L}x\right).$$

Then the set of functions $\{v_1, v_2, \ldots, w_1, w_2, \ldots\}$ is an orthogonal set.

Observation: Let f(x) be a function. Its Fourier coefficients are exactly

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi}{L}x\right) dx = \frac{(f, v_n)}{(v_n, v_n)}$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi}{L}x\right) dx = \frac{(f, w_n)}{(w_n, w_n)}$$

Therefore, the Fourier series of f(x) is just

$$f(x) = \frac{(f, v_0)}{(v_0, v_0)} v_0 + \sum_{n=1}^{\infty} \frac{(f, v_n)}{(v_n, v_n)} v_n + \sum_{n=1}^{\infty} \frac{(f, w_n)}{(w_n, w_n)} w_n$$

This is an (infinite-dimensional) analogue of the linear algebra above!

Useful for Fourier Series: Even and Odd Functions

Facts:

- \circ Even function \times Even function = Even function
- \circ Odd function \times Odd function = Even function
- \circ Odd function \times Even function = Odd function.

• If
$$f(x)$$
 is odd, then $\int_{-L}^{L} f(x) = 0$.
• If $f(x)$ is even, then $\int_{-L}^{L} f(x) = 2 \int_{0}^{L} f(x)$.

N.B.: A function f(x) can be even, odd, neither, or both. Most functions are neither. The only function that is both even and odd is $f(x) \equiv 0$.

Intro to PDEs

ODE: Differential equation whose solutions u = u(t) are functions of one variable. Derivatives involved are ordinary derivatives u' or u'' or u''', etc.

Initial-value Problem: Diff eqn + Initial values specified

PDE: Differential equation whose solutions u = u(x, y) are functions of two variables (or more). Derivatives involved are partial derivatives u_x, u_y or u_{xx}, u_{xy}, u_{yy} , etc.

Dirichlet Problem: Diff eqn + Boundary values specified

Neumann Problem: Diff eqn + "Normal directional derivatives" specified.

Recall: Differential equations (both ODEs and PDEs) are classified by their **order**: i.e., the highest-order derivative appearing in the equation.

1st-Order PDEs: Most 1st-order PDEs can be converted into a 1st-order (nonlinear) ODE system.

This is called the "method of characteristics." We won't study it. The point is that 1st-order PDEs reduce to the study of 1st-order ODE systems.

2nd-Order PDEs: Our understanding of 2nd-order PDEs is largely based around understanding three foundational examples:

• Laplace Equation: $u_{xx} + u_{yy} = 0$

• Heat Equation: $u_{xx} = u_y$

• Wave Equation: $u_{xx} - u_{yy} = 0$.

These three equations are very different from each other. We'll only talk about the Laplace equation.

Example Problems: Solve the Laplace equation $u_{xx} + u_{yy} = 0$ subject to:

(D1) Dirichlet conditions on a Rectangle

(D2) Dirichlet conditions on the Interior of a Disk

(D3) Dirichlet conditions on the Exterior of a Disk

(D4) Dirichlet conditions on a Circular Sector

(D5) Dirichlet conditions on a Semi-infinite Strip

(N1) Neumann conditions on a Rectangle

(N2) Neumann conditions on the Interior of a Disk

We'll discuss problems (D1) and (D2). Problems (D3) and (D4) are HW.

Review: Circular Trigonometric Functions

Recall: The functions cos and sin are defined by

$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix}), \quad \sin x = \frac{1}{2i}(e^{ix} - e^{-ix}).$$

Notice that **cos is even**, while **sin is odd**.

Fact 1: The Taylor series of \cos and \sin centered at x = 0 are

$$\cos x = \sum_{0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \quad \sin x = \sum_{0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

Fact 2: The functions cos and sin satisfy the following pythagorean identity:

$$\cos^2(x) + \sin^2(x) = 1$$

Corollary: The parametric curve given by $x = \cos(t)$, $y = \sin(t)$ is a **unit circle**.

Fact 3: The derivatives of cos and sin are:

$$\frac{d}{dx}(\sin x) = \cos x, \qquad \frac{d}{dx}(\cos x) = -\sin x.$$

Thus, both cos and sin solve the 2nd-order ODE given by y'' = -y

New: Hyperbolic Trigonometric Functions

Recall: The functions cosh and sinh are defined by

$$\cosh x = \frac{1}{2}(e^x + e^{-x}), \quad \sinh x = \frac{1}{2}(e^x - e^{-x}).$$

Notice that cosh is even, while sinh is odd.

Fact 1: The Taylor series of \cosh and \sinh centered at x = 0 are

$$\cosh x = \sum_{0}^{\infty} \frac{1}{(2n)!} x^{2n}, \quad \sinh x = \sum_{0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}$$

Fact 2: The functions cosh and sinh satisfy the following pythagorean identity

$$\cosh^2(x) - \sinh^2(x) = 1.$$

Corollary: The parametric curve given by $x = \cosh(t), y = \sinh(t)$ is a hyperbola.

Fact 3: The derivatives of cosh and sinh are:

$$\frac{d}{dx}(\sinh x) = \cosh x, \qquad \frac{d}{dx}(\cosh x) = \sinh x$$

Notice how there are no minus signs! That is, both sinh and cosh solve y'' = y

Laplace Equation: Dirichlet Problem for Rectangles: I

Goal: Solve the Laplace equation $u_{xx} + u_{yy} = 0$ on the rectangle $(0, a) \times (0, b)$ subject to the Dirichlet boundary conditions:

$$u(x,0) = 0$$

 $u(x,b) = 0$
 $u(a,y) = f(y),$

where f(y) is a given function on $0 \le y \le b$.

Step 1: Assume that there is a non-trivial solution of the form u(x, y) = X(x)Y(y). (Here, "non-trivial" means $u(x, y) \neq 0$.) We have to find X(x) and Y(y).

If u(x, y) = X(x)Y(y) solves $u_{xx} + u_{yy} = 0$, then

$$0 = u_{xx} + u_{yy} = X''(x)Y(y) + X(x)Y''(y) = XY\left(\frac{X''}{X} + \frac{Y''}{Y}\right).$$

Therefore:

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)}.$$

This last equation has a function of x equal to a function of y. Therefore, both sides must equal some constant. To obtain solutions which are *non-trivial*, this constant must be positive, so call it λ^2 :

$$\frac{X''}{X} = -\frac{Y''}{Y} = \lambda^2$$

Therefore, we have initial-value problems:

$$X'' - \lambda^2 X = 0 Y'' + \lambda^2 Y = 0 Y(0) = 0 Y(b) = 0.$$

Step 2: Solve the IVPs.

First, the general solution of the ODE for X(x) is

$$X(x) = c_1 \cosh(\lambda x) + c_2 \sinh(\lambda x).$$

The initial condition X(0) = 0 gives $c_1 = 0$, and hence

$$X(x) = c_2 \sinh(\lambda x).$$

Second, the general solution to the ODE for Y(y) is

$$Y(y) = c_3 \sin(\lambda y) + c_4 \sin(\lambda y).$$

The initial condition Y(0) = 0 gives $c_3 = 0$, and hence

$$Y(y) = c_4 \sin(\lambda y)$$

The initial condition Y(b) = 0 gives $c_4 \sin(\lambda b) = 0$. We assume $c_4 \neq 0$, so that

$$\sin(\lambda b) = 0 \implies \lambda b = n\pi$$
 for any $n \in \mathbb{Z}$

$$\implies \lambda = \frac{n\pi}{b}$$
 for any $n \in \mathbb{Z}$

We conclude that

$$X(x) = c_2 \sinh\left(\frac{n\pi}{b}x\right)$$
 $Y(y) = c_4 \sin\left(\frac{n\pi}{b}y\right).$

Laplace Equation: Dirichlet Problem for Rectangles: II

Goal: Solve the Laplace equation $u_{xx} + u_{yy} = 0$ on the rectangle $(0, a) \times (0, b)$ subject to the Dirichlet boundary conditions:

$$u(x, 0) = 0$$

 $u(x, b) = 0$
 $u(0, y) = 0$
 $u(a, y) = f(y)$

where f(y) is a given function on $0 \le y \le b$.

Summary: We assumed that there is a solution of the form u(x, y) = X(x)Y(y).

By requiring $u_{xx} + u_{yy} = 0$, together with three of the four boundary conditions, we were led to the functions

$$X_n(x) = \sinh\left(\frac{n\pi}{b}x\right)$$
$$Y_n(y) = \sin\left(\frac{n\pi}{b}y\right), \qquad n \in \mathbb{N}.$$

So, our first conclusion is that the functions

$$u_n(x,y) = X_n(x)Y_n(y) = \sinh\left(\frac{n\pi}{b}x\right)\sin\left(\frac{n\pi}{b}y\right)$$

solve both the PDE and three of the four boundary conditions, for any positive integer $n \in \mathbb{N}$.

Step 3: Finally, we need to impose the fourth boundary condition u(a, y) = f(y). For this, we need a little trick.

Since the functions u_1, u_2, u_3, \ldots all satisfy the PDE and the homogeneous boundary conditions, it follows that any finite linear combination $c_1u_1 + c_2u_2 + \cdots + c_Nu_N$ does, too. It turns out that an "infinite linear combination" also does, as well. That is, we consider

$$u(x,y) = \sum_{1}^{\infty} c_n u_n(x,y) = \sum_{1}^{\infty} c_n \sinh\left(\frac{n\pi}{b}x\right) \sin\left(\frac{n\pi}{b}y\right).$$

Step 4: We need to determine the coefficients c_n that make u(a, y) = f(y) true. So, we require that the condition u(a, y) = f(y) hold:

$$f(y) = u(a, y) = \sum_{1}^{\infty} \underbrace{c_n \sinh\left(\frac{n\pi}{b}a\right)}_{\text{call this } B_n} \sin\left(\frac{n\pi}{b}y\right) = \sum_{1}^{\infty} B_n \sin\left(\frac{n\pi}{b}y\right).$$

This is a Fourier series for f(y)! Therefore, the coefficients c_n are determined by the formula

$$c_n \sinh\left(\frac{n\pi}{b}a\right) = B_n = \frac{1}{b} \int_{-b}^{b} f(y) \sin\left(\frac{n\pi}{b}y\right) dy$$
$$= \frac{2}{b} \int_{0}^{b} f(y) \sin\left(\frac{n\pi}{b}y\right) dy.$$
 (integrand is even)

Therefore,

$$c_n = \frac{1}{\sinh\left(\frac{na\pi}{b}\right)} \cdot \frac{2}{b} \int_0^b f(y) \sin\left(\frac{n\pi}{b}y\right) dy.$$

Laplace Equation: Dirichlet Problem for Disk Interior: I

Goal: Solve the Laplace equation $u_{xx} + u_{yy} = 0$ on the disk $\{x^2 + y^2 < a^2\}$ subject to Dirichlet boundary conditions.

Preliminaries: Polar Coordinates.

The Laplace equation in polar coordinates (r, θ) is:

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0.$$

In polar coordinates, the interior of the disk is the region $0 \le r < a$.

A Dirichlet boundary condition means specifying $u(r, \theta)$ on the boundary circle r = a:

$$u(a,\theta) = f(\theta),$$

where $f(\theta)$ is a *periodic function* of period 2π .

We can now try to mimic the steps in the case of a rectangle.

Note: We will require that $u(r, \theta)$ be a bounded function (this will be important later).

Step 1: Assume there is a non-trivial solution of the form $u(r, \theta) = R(r)\Theta(\theta)$, where $\Theta(\theta)$ is periodic of period 2π . We have to find R(r) and $\Theta(\theta)$.

If $u(r,\theta) = R(r)\Theta(\theta)$ solves $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$, then

$$0 = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = R''\Theta + \frac{1}{r}R'\Theta + \frac{1}{r^2}R\Theta''.$$

Therefore:

$$r^2 \frac{R''(r)}{R(r)} + r \frac{R'(r)}{R(r)} = -\frac{\Theta''(\theta)}{\Theta(\theta)}$$

This last equation has a function of r equal to a function of θ . Therefore, both sides must equal some constant, say λ :

$$r^2 \frac{R''}{R} + r \frac{R'}{R} = -\frac{\Theta''}{\Theta} = \lambda.$$

Therefore, we have ODEs:

$$r^2 R'' + r R' - \lambda R = 0 \qquad \qquad \Theta'' + \lambda \Theta = 0.$$

The separation constant λ must be non-negative (see textbook), so we write $\lambda = \mu^2$. Thus:

$$r^{2}R'' + rR' - \mu^{2}R = 0 \qquad \Theta'' + \mu^{2}\Theta = 0.$$

Step 2: Solve the ODEs.

The 2nd-order linear ODE for $\Theta(\theta)$ is constant-coefficient, so

$$\Theta(\theta) = c_1 \cos(\mu\theta) + c_2 \sin(\mu\theta).$$

For $\Theta(\theta)$ to have period 2π , we need μ to be an integer – i.e.: $\mu = n \in \mathbb{Z}^+$.

The 2nd-order linear ODE for R(r) is a Cauchy-Euler equation (appeared in HW 8). It has the general solution

$$R(r) = c_3 r^n + c_4 r^{-n}.$$

For $u(r, \theta)$ to be bounded, we need R(r) bounded on [0, a]. So, for $n \ge 0$, we need $c_4 = 0$:

$$R(r) = c_3 r^n.$$

Laplace Equation: Dirichlet Problem for Disk Interior: II

Goal: Solve the Laplace equation $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$ on the disk $\{r < a\}$ subject to the Dirichlet boundary condition $u(a, \theta) = f(\theta)$.

Summary: We assumed that there is a (bounded) solution of the form $u(r, \theta) = R(r)\Theta(\theta)$, where Θ has period 2π .

By requiring $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$, together with the requirements that $u(r, \theta)$ be bounded and $\Theta(\theta)$ be 2π -periodic, we were led to the functions

$$R_n(r) = r^n$$

$$\Theta_n(\theta) = c_3 \cos(n\theta) + c_4 \sin(n\theta).$$

So, our first conclusion is that the functions

$$u_n(r,\theta) = r^n \cos(n\theta)$$

$$v_n(r,\theta) = r^n \sin(n\theta), \qquad n \in \mathbb{Z}_{\geq 0}.$$

Step 3: Finally, we need to impose the boundary condition $u(a, \theta) = f(\theta)$. For this, we need the same superposition trick as for the rectangle.

That is: We consider the "infinite linear combination"

$$u(r,\theta) = \frac{c_0}{2}u_0(r,\theta) + \frac{k_0}{2}v_0(r,\theta) + \sum_{1}^{\infty} [c_n u_n(r,\theta) + k_n v_n(r,\theta)].$$

Since $u_0(r, \theta) \equiv 1$ and $v_0(r, \theta) \equiv 0$, we have:

$$u(r,\theta) = \frac{c_0}{2} + \sum_{1}^{\infty} [c_n r^n \cos(n\theta) + k_n r^n \sin(n\theta)].$$

Step 4: We need to determine the coefficients c_n, k_n that make $u(a, \theta) = f(\theta)$ true. So, we require that $u(a, \theta) = f(\theta)$ hold:

$$f(\theta) = u(a,\theta) = \frac{c_0}{2} + \sum_{1}^{\infty} [c_n a^n \cos n\theta + k_n a^n \sin n\theta].$$

This is a Fourier series for $f(\theta)$! Therefore, the coefficients c_n, k_n are determined by the formulas

$$a^{n}c_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) \cos n\theta \, d\theta$$
$$a^{n}k_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) \sin n\theta \, d\theta.$$

For Clarification: Cauchy-Euler Equations

Def: A Cauchy-Euler equation is a 2nd-order linear ODE of the form

$$x^2y'' + pxy' + qy = 0,$$
 (CE)

where $p, q \in \mathbb{R}$ are constants.

Notice that x = 0 is a regular singular point of this ODE.

We learned how to solve Cauchy-Euler equations (HW #8). The trick was to make the substitutions

$$t = \ln x$$
$$u(t) = y(e^t).$$

You showed that these substitutions transform (CE) into

$$u'' + (p-1)u' + qu = 0. \tag{(\star)}$$

This is a 2nd-order linear ODE with *constant coefficients*! Yay!

We solve (\star) by writing its characteristic equation

$$\lambda^2 + (p-1)\lambda + q\lambda = 0.$$

There are three possibilities:

(1) Real, distinct roots (λ_1, λ_2) :

$$y(e^{t}) = u(t) = c_{1}e^{\lambda_{1}t} + c_{2}e^{\lambda_{2}t}$$

$$\implies y(x) = c_{1}x^{\lambda_{1}} + c_{2}x^{\lambda_{2}}.$$
 (x > 0)

(2) Real, repeated roots (λ) :

$$y(e^{t}) = u(t) = c_{1}e^{\lambda t} + c_{2}te^{\lambda t}$$
$$\implies y(x) = c_{1}x^{\lambda} + c_{2}x^{\lambda}\ln(x). \qquad (x > 0)$$

(3) Complex conjugate roots $(\mu \pm i\nu)$:

$$y(e^{t}) = u(t) = e^{\mu t} \left[c_1 \cos(\nu t) + c_2 \sin(\nu t) \right]$$

$$\implies y(x) = x^{\mu} \left[c_1 \cos(\nu \ln(x)) + c_2 \sin(\nu \ln(x)) \right]. \qquad (x > 0)$$