Laplace Transform: Examples

Def: Given a function $f(t)$ defined for $t>0$. Its Laplace transform is the function, denoted $F(s)=\mathcal{L}\{f\}(s)$, defined by:

$$
F(s)=\mathcal{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

(Issue: The Laplace transform is an improper integral. So, does it always exist? i.e.: Is the function $F(s)$ always finite? Answer: This is a little subtle. We'll discuss this next time.)

Fact (Linearity): The Laplace transform is linear:

$$
\mathcal{L}\left\{c_{1} f_{1}(t)+c_{2} f_{2}(t)\right\}=c_{1} \mathcal{L}\left\{f_{1}(t)\right\}+c_{2} \mathcal{L}\left\{f_{2}(t)\right\}
$$

Example 1: $\mathcal{L}\{1\}=\frac{1}{s}$
Example 2: $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
Example 3: $\mathcal{L}\{\sin (a t)\}=\frac{a}{s^{2}+a^{2}}$
Example 4: $\mathcal{L}\{\cos (a t)\}=\frac{s}{s^{2}+a^{2}}$
Example 5: $\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$

Useful Fact: Euler's Formula says that

$$
\begin{aligned}
e^{i t} & =\cos t+i \sin t \\
e^{-i t} & =\cos t-i \sin t
\end{aligned}
$$

Therefore,

$$
\cos t=\frac{1}{2}\left(e^{i t}+e^{-i t}\right), \quad \sin t=\frac{1}{2 i}\left(e^{i t}-e^{-i t}\right) .
$$

Laplace Transform: Key Properties

Recall: Given a function $f(t)$ defined for $t>0$. Its Laplace transform is the function, denoted $F(s)=\mathcal{L}\{f\}(s)$, defined by:

$$
F(s)=\mathcal{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Notation: In the following, let $F(s)=\mathcal{L}\{f(t)\}$.
Fact A: We have

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

Fact B (Magic): Derivatives in $t \rightarrow$ Multiplication by s (well, almost).

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime}(t)\right\} & =\binom{s}{1} \cdot\binom{F(s)}{-f(0)}=s F(s)-f(0) \\
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =\left(\begin{array}{c}
s^{2} \\
s \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
F(s) \\
-f(0) \\
-f^{\prime}(0)
\end{array}\right)=s^{2} F(s)-s f(0)-f^{\prime}(0) \\
\mathcal{L}\left\{f^{(n)}(t)\right\} & =\left(\begin{array}{c}
s^{n} \\
s^{n-1} \\
\vdots \\
s \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
F(s) \\
-f(0) \\
\cdots \\
-f^{(n-2)}(0) \\
-f^{(n-1)}(0)
\end{array}\right) \\
& =s^{n} F(s)-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
\end{aligned}
$$

Fact C (Magic): Multiplication by $t \rightarrow$ Derivatives in s (almost).

$$
\begin{aligned}
\mathcal{L}\{t f(t)\} & =-F^{\prime}(s) \\
\mathcal{L}\left\{t^{n} f(t)\right\} & =(-1)^{n} F^{(n)}(s)
\end{aligned}
$$

Laplace Transform: Existence

Recall: Given a function $f(t)$ defined for $t>0$. Its Laplace transform is the function defined by:

$$
F(s)=\mathcal{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Issue: The Laplace transform is an improper integral. So, does it always exist? i.e.: Is the function $F(s)$ always finite?

Def: A function $f(t)$ is of exponential order if there is a threshold $M \geq 0$ and constants $K>0, a \in \mathbb{R}$ such that

$$
|f(t)| \leq K e^{a t}, \quad \text { when } t \geq M
$$

Equivalently: There is a threshold $M \geq 0$ and a constant $a \in \mathbb{R}$ such that the function $\frac{f(t)}{e^{a t}}$ is bounded when $t \geq M$ (meaning that $\left|\frac{f(t)}{e^{a t}}\right| \leq K$).
Theorem: Let $f(t)$ be a function that is:
(1) continuous;
(2) of exponential order (with exponent a).

Then:
(a) $F(s)=\mathcal{L}\{f(t)\}(s)$ exists for all $s>a$; and
(b) $\lim _{s \rightarrow \infty} F(s)=0$.

Example: The function $f(t)=\exp \left(t^{2}\right)$ is not of exponential order.
Remark: If $f(t)$ is not continuous, or not of exponential order, then the Laplace transform may or may not exist.

Inverse Laplace Transform: Existence

Want: A notion of "inverse Laplace transform." That is, we would like to say that if $F(s)=\mathcal{L}\{f(t)\}$, then $f(t)=\mathcal{L}^{-1}\{F(s)\}$.

Issue: How do we know that \mathcal{L} even has an inverse \mathcal{L}^{-1} ? Remember, not all operations have inverses.

To see the problem: imagine that there are different functions $f(t)$ and $g(t)$ which have the same Laplace transform $H(s)=\mathcal{L}\{f\}=\mathcal{L}\{g\}$. Then $\mathcal{L}^{-1}\{H(s)\}$ would make no sense: after all, should $\mathcal{L}^{-1}\{H\}$ be $f(t)$ or $g(t) ?$

Fortunately, this bad scenario can never happen:
Theorem: Let $f(t), g(t)$ be continuous functions on $[0, \infty)$ of exponential order. If $\mathcal{L}\{f\}=\mathcal{L}\{g\}$, then $f(t)=g(t)$ for all $t \in[0, \infty)$.

Def: Let $f(t)$ be continuous on $[0, \infty)$ and of exponential order.
We call $f(t)$ the inverse Laplace transform of $F(s)=\mathcal{L}\{f(t)\}$. We write $f=\mathcal{L}^{-1}\{F\}$.

Fact (Linearity): The inverse Laplace transform is linear:

$$
\mathcal{L}^{-1}\left\{c_{1} F_{1}(s)+c_{2} F_{2}(s)\right\}=c_{1} \mathcal{L}^{-1}\left\{F_{1}(s)\right\}+c_{2} \mathcal{L}^{-1}\left\{F_{2}(s)\right\} .
$$

Inverse Laplace Transform: Examples

Example 1: $\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
Example 2: $\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^{n}}\right\}=e^{a t} \frac{t^{n-1}}{(n-1)!}$
Example 3: $\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+b^{2}}\right\}=\cos b t$
Example 4: $\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+b^{2}}\right\}=\frac{1}{b} \sin b t$
Fact A: We have $\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)$.
Therefore:

$$
\mathcal{L}^{-1}\{F(s-a)\}=e^{a t} \mathcal{L}^{-1}\{F(s)\} .
$$

Partial Fractions

Setup: Given a rational function

$$
R(x)=\frac{p(x)}{q(x)}
$$

Saying that R is rational means that both p and q are polynomials.
Begin by factoring the denominator $q(x)$ over \mathbb{R}. (The phrase "over \mathbb{R} " means, e.g., that $x^{3}+4 x$ factors as $x\left(x^{2}+4\right)$. That is, we do not allow complex numbers. Factoring into $x(x+2 i)(x-2 i)$ would be factoring "over \mathbb{C}.")

Case 1: $q(x)$ has linear distinct factors, meaning that we can express $q(x)=$ $\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)$. In this case, we write

$$
\frac{p(x)}{q(x)}=\frac{A_{1}}{x-a_{1}}+\cdots+\frac{A_{n}}{x-a_{n}} .
$$

Case 2: $q(x)$ has linear factors, where some are repeated. Corresponding to this factor like $(x-a)^{p}$, we write

$$
\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\cdots+\frac{A_{p}}{(x-a)^{p}} .
$$

Case 3: $q(x)$ has a quadratic factor, not repeated. Corresponding to a factor like $(x-(\mu+i \nu))(x-(\mu-i \nu))=(x-\mu)^{2}+\nu^{2}$, we write

$$
\frac{A(x-\mu)+B \nu}{(x-\mu)^{2}+\nu^{2}} .
$$

Case 4: $q(x)$ has repeated quadratic factors. Corresponding to a factor like $\left((x-\mu)^{2}+\nu^{2}\right)^{n}$, we write

$$
\frac{A_{1}(x-\mu)+B_{1} \nu}{(x-\mu)^{2}+\nu^{2}}+\frac{A_{2}(x-\mu)+B_{2} \nu}{\left((x-\mu)^{2}+\nu^{2}\right)^{2}}+\cdots+\frac{A_{n}(x-\mu)+B_{n} \nu}{\left((x-\mu)^{2}+\nu^{2}\right)^{n}} .
$$

Example: Here is a partial fraction decomposition:

$$
\frac{7 x^{3}+2}{(x-3)^{2}\left(x^{2}+25\right)^{2}}=\frac{A}{x-3}+\frac{B}{(x-3)^{2}}+\frac{C x+5 D}{x^{2}+25}+\frac{E x+5 F}{\left(x^{2}+25\right)^{2}} .
$$

Review: Intro to Power Series

A power series is a series of the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots
$$

It can be thought of as an "infinite polynomial."
The number x_{0} is called the center.

A power series may converge for some values of x, but diverge for other values of x. A power series will always converge at its center $x=x_{0}$ (do you see why?).

Question: Given a power series, for what values of x does it converge, and for what values of x does it diverge?

Theorem: Given a power series $\sum a_{n}\left(x-x_{0}\right)^{n}$. Then either:
(i) The power series converges only at $x=x_{0}$. (Case $R=0$)
(ii) The power series converges for all $x \in \mathbb{R}$. (Case $R=+\infty$)
(iii) The power series converges on an interval $\left|x-x_{0}\right|<R$, and diverges if $\left|x-x_{0}\right|>R$.

The number R is called the radius of convergence.
Note: This theorem says nothing about the convergence/divergence at the endpoints of the interval. Those have to be checked separately.

Finding the Interval of Convergence:

(1) Determine the center x_{0}.
(2) Determine the radius of convergence R. Use the Ratio Test to do this.
(3) Check convergence/divergence at the endpoints.

Review: Power Series are Functions

Given a power series $\sum a_{n}\left(x-x_{0}\right)^{n}$, we can think of it as a function of x :

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Domain of $f(x)$: The set of all x-values for which the series converges. That is, the domain is exactly the interval of convergence.

Although every power series (with $R>0$) is a function, not all functions arise in this way. i.e.: Not all functions are equal to a convergent power series! Those functions which are have a special name:

Def: A function $f(x)$ is analytic at $x=x_{0}$ if it is equal to a power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

that has positive radius of convergence $R>0$.
Analytic functions are the best-behaved functions in all of calculus. For example, every analytic function is infinitely-differentiable:

Theorem: Let $f(x)$ be analytic at x_{0}, say $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ with radius of convergence $R>0$. Then:
(a) f is infinitely-differentiable on the interval $\left(x_{0}-R, x_{0}+R\right)$.
(b) The derivative of f is:

$$
\begin{equation*}
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \tag{*}
\end{equation*}
$$

(c) The indefinite integral of f is:

$$
\int f(x) d x=C+\sum_{n=0}^{\infty} a_{n} \frac{\left(x-x_{0}\right)^{n+1}}{n+1}
$$

(d) The radii of convergence of $(*)$ and (\dagger) are both R.

Note: Again, this theorem says nothing about convergence/divergence at the endpoints. Those have to be checked separately.

Review: Taylor Series

Recall that a power series is any series of the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots
$$

Def: Let $f(x)$ be infinitely-differentiable on an interval $\left|x-x_{0}\right|<R$.
The Taylor series of f at $x=x_{0}$ is the power series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots
$$

So, by definition: every Taylor series is a power series.
Conversely, every power series with $R>0$ is a Taylor series:
Theorem: If $f(x)=\sum a_{n}\left(x-x_{0}\right)^{n}$ is a power series with radius of convergence $R>0$, then

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

(So: The given power series $\sum a_{n}\left(x-x_{0}\right)^{n}$ is exactly the Taylor series of $f(x)$.)
Corollary: If $f(x)$ is analytic at x_{0}, then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
$$

So: If f is analytic at $x=x_{0}$, then the Taylor series of f does converge to f.
There are functions infinitely-differentiable at x_{0} but not analytic at x_{0}. For those functions, the Taylor series at x_{0} will only equal $f(x)$ at $x=x_{0}$ even if the Taylor series converges on an interval $\left(x_{0}-R, x_{0}+R\right)$!

Classic Scary Example: The function $f(x)=\left\{\begin{array}{ll}\exp \left(-\frac{1}{x^{2}}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0 .\end{array}\right.$ is infinitely-differentiable on all of \mathbb{R}. Its derivatives at $x=0$ are $f^{(n)}(0)=0$ for each $n=0,1,2, \ldots$. Therefore, its Taylor series at $x=0$ is

$$
0+\frac{0}{1!} x+\frac{0}{2!} x^{2}+\cdots
$$

which converges on all of \mathbb{R} to the function $g(x)=0$.
Point: Our function $f(x)$ (which is defined on all of \mathbb{R}) is only equal to its Taylor series (which is also defined on all of \mathbb{R}) at $x=0$. Weird!

Review: Examples of Taylor Series

Many of the functions we care about are analytic, meaning that they are equal to a power series. For example:

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
\end{aligned}
$$

It's also good to know about

$$
\begin{aligned}
& \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots \\
& \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots
\end{aligned}
$$

Again: If $f(x)$ is analytic, meaning that it is equal to a power series, then that power series is the Taylor series of $f(x)$.

Review: Taylor Polynomials

Def: The n th-degree Taylor polynomial of $f(x)$ is the polynomial

$$
T_{n}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
$$

Main Point of Taylor Series: The Taylor polynomials $T_{n}(x)$ are the best polynomial approximations to $f(x)$ near the center $x=x_{0}$.

Example: The first Taylor polynomial

$$
T_{1}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

is the best linear approximation near $x=x_{0}$. After all, $T_{1}(x)$ is exactly the tangent line to $f(x)$ at $x=x_{0}$.

Similarly: The second Taylor polynomial

$$
T_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}
$$

is the "tangent parabola" at $x=x_{0}$. Et cetera.

Series Solutions to ODEs: Ordinary Points

Goal: Given a 2nd-order linear ODE (with non-constant coefficients)

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

We usually cannot solve for $y(x)$ explicitly.
Hope: Maybe we can express $y(x)$ as a power series: $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. If we can do this, then the partial sums (i.e.: the Taylor polynomials) are polynomial approximations to $y(x)$.

Def: Given a 2nd-order linear ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

A point x_{0} is a ordinary point if both $p(x), q(x)$ are analytic at x_{0}. A point x_{0} is a singular point otherwise.

Theorem: Given a 2 nd-order linear ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

Suppose that x_{0} is an ordinary point.
Then the general solution may be written as a power series

$$
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0}, a_{1} are arbitrary constants, and $y_{1}(x), y_{2}(x)$ are power-series solutions (and hence analytic at x_{0}). Moreover, $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental set of solutions.

Also: the radii of convergence for the series solutions of $y_{1}(x), y_{2}(x)$ are at least the minimum of the radii of convergence of the series for $p(x)$ and $q(x)$.

Fourier Series: Intro

Recall: A power series is an "infinite polynomial."
Given a function $f(x)$, the Taylor series of $f(x)$ is a power series where the coefficients are determined by some formula $\left(a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}\right)$.

Often, the Taylor series of $f(x)$ does converge to $f(x)$. So, Taylor series let us approximate $f(x)$ by a sequence of polynomials.

Today: A trigonometric series is an "infinite trig polynomial."
Given a function $f(x)$, the Fourier series of $f(x)$ is a trigonometric series where the coefficients are determined by some formula (below).

Often, the Fourier series of $f(x)$ does converge to $f(x)$. So, Fourier series let us approximate $f(x)$ by a sequence of "waves."

Def: A trigonometric series is an infinite series of the form

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)\right) .
$$

Given a function $f(x)$, its Fourier series is the trigonometric series whose coefficients are given by:

$$
\begin{align*}
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x \tag{A}\\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x \tag{B}
\end{align*}
$$

So, every Fourier series is a trigonometric series. Conversely, every convergent trigonometric series is a Fourier series:

Fact: If $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)\right)$ is a trigonometric series which converges, then its coefficients a_{n}, b_{n} are given by (A)-(B) above.

Fourier Convergence Theorem: Suppose $f(x)$ is periodic of period $2 L$. Suppose also that $f(x)$ and $f^{\prime}(x)$ are piecewise-continuous on $[-L, L)$.

Then the Fourier series of f converges to $f(x)$ at all points where f is continuous. It converges to $\frac{1}{2}[f(x+)+f(x-)]$ at all points where f is discontinuous.

Linear Algebra Review: Orthogonal Bases

Recall: A basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ for a subspace $V \subset \mathbb{R}^{n}$ is orthogonal if:

- The basis vectors are mutually orthogonal: $\mathbf{w}_{i} \cdot \mathbf{w}_{j}=0$ (for $i \neq j$).

Given a basis \mathcal{B}, it is generally a pain to find the \mathcal{B}-coordinates of a given vector. But when \mathcal{B} is an orthogonal basis, there is a very simple formula:

Fact: Let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ be an orthogonal basis for a subspace $V \subset \mathbb{R}^{n}$.
Then every vector $\mathbf{y} \in V$ can be written:

$$
\mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{w}_{k}}{\mathbf{w}_{k} \cdot \mathbf{w}_{k}} \mathbf{w}_{k}
$$

This is sometimes called the Fourier expansion of $\mathbf{y} \in V$. Hmm.....

Fourier Series: A Powerful Geometric Perspective

Def: The inner product of two functions $f(x), g(x)$ on an interval $[a, b]$ is:

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

We say that $f(x)$ and $g(x)$ are orthogonal functions if $(f, g)=0$.
A set of functions $f_{1}(x), f_{2}(x), \ldots$ is an orthogonal set of functions if every pair in the set is orthogonal: $\left(f_{i}, f_{j}\right)=0$ for $i \neq j$.

Fact: Consider the functions

$$
v_{n}(x)=\cos \left(\frac{n \pi}{L} x\right), \quad w_{n}(x)=\sin \left(\frac{n \pi}{L} x\right) .
$$

Then the set of functions $\left\{v_{1}, v_{2}, \ldots, w_{1}, w_{2}, \ldots\right\}$ is an orthogonal set.
Observation: Let $f(x)$ be a function. Its Fourier coefficients are exactly

$$
\begin{aligned}
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x=\frac{\left(f, v_{n}\right)}{\left(v_{n}, v_{n}\right)} \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x=\frac{\left(f, w_{n}\right)}{\left(w_{n}, w_{n}\right)} .
\end{aligned}
$$

Therefore, the Fourier series of $f(x)$ is just

$$
f(x)=\frac{\left(f, v_{0}\right)}{\left(v_{0}, v_{0}\right)} v_{0}+\sum_{n=1}^{\infty} \frac{\left(f, v_{n}\right)}{\left(v_{n}, v_{n}\right)} v_{n}+\sum_{n=1}^{\infty} \frac{\left(f, w_{n}\right)}{\left(w_{n}, w_{n}\right)} w_{n}
$$

This is an (infinite-dimensional) analogue of the linear algebra above!

Useful for Fourier Series: Even and Odd Functions

Facts:

- Even function \times Even function $=$ Even function
- Odd function \times Odd function $=$ Even function
- Odd function \times Even function $=$ Odd function.
- If $f(x)$ is odd, then $\int_{-L}^{L} f(x)=0$.
- If $f(x)$ is even, then $\int_{-L}^{L} f(x)=2 \int_{0}^{L} f(x)$.
N.B.: A function $f(x)$ can be even, odd, neither, or both. Most functions are neither. The only function that is both even and odd is $f(x) \equiv 0$.

Intro to PDEs

ODE: Differential equation whose solutions $u=u(t)$ are functions of one variable. Derivatives involved are ordinary derivatives u^{\prime} or $u^{\prime \prime}$ or $u^{\prime \prime \prime}$, etc.

Initial-value Problem: Diff eqn + Initial values specified
PDE: Differential equation whose solutions $u=u(x, y)$ are functions of two variables (or more). Derivatives involved are partial derivatives u_{x}, u_{y} or $u_{x x}, u_{x y}, u_{y y}$, etc.

Dirichlet Problem: Diff eqn + Boundary values specified
Neumann Problem: Diff eqn + "Normal directional derivatives" specified.
Recall: Differential equations (both ODEs and PDEs) are classified by their order: i.e., the highest-order derivative appearing in the equation.

1st-Order PDEs: Most 1st-order PDEs can be converted into a 1st-order (nonlinear) ODE system.

This is called the "method of characteristics." We won't study it. The point is that 1st-order PDEs reduce to the study of 1st-order ODE systems.

2nd-Order PDEs: Our understanding of 2nd-order PDEs is largely based around understanding three foundational examples:

- Laplace Equation: $u_{x x}+u_{y y}=0$
- Heat Equation: $u_{x x}=u_{y}$
- Wave Equation: $u_{x x}-u_{y y}=0$.

These three equations are very different from each other. We'll only talk about the Laplace equation.

Example Problems: Solve the Laplace equation $u_{x x}+u_{y y}=0$ subject to:
(D1) Dirichlet conditions on a Rectangle
(D2) Dirichlet conditions on the Interior of a Disk
(D3) Dirichlet conditions on the Exterior of a Disk
(D4) Dirichlet conditions on a Circular Sector
(D5) Dirichlet conditions on a Semi-infinite Strip
(N1) Neumann conditions on a Rectangle
(N2) Neumann conditions on the Interior of a Disk
We'll discuss problems (D1) and (D2). Problems (D3) and (D4) are HW.

Review: Circular Trigonometric Functions

Recall: The functions cos and sin are defined by

$$
\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right), \quad \sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) .
$$

Notice that cos is even, while sin is odd.
Fact 1: The Taylor series of \cos and sin centered at $x=0$ are

$$
\cos x=\sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}, \quad \sin x=\sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

Fact 2: The functions cos and sin satisfy the following pythagorean identity:

$$
\cos ^{2}(x)+\sin ^{2}(x)=1
$$

Corollary: The parametric curve given by $x=\cos (t), y=\sin (t)$ is a unit circle.
Fact 3: The derivatives of \cos and sin are:

$$
\frac{d}{d x}(\sin x)=\cos x, \quad \frac{d}{d x}(\cos x)=-\sin x .
$$

Thus, both cos and sin solve the 2nd-order ODE given by $y^{\prime \prime}=-y$

New: Hyperbolic Trigonometric Functions

Recall: The functions cosh and sinh are defined by

$$
\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right), \quad \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) .
$$

Notice that cosh is even, while sinh is odd.
Fact 1: The Taylor series of cosh and sinh centered at $x=0$ are

$$
\cosh x=\sum_{0}^{\infty} \frac{1}{(2 n)!} x^{2 n}, \quad \sinh x=\sum_{0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}
$$

Fact 2: The functions cosh and sinh satisfy the following pythagorean identity

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

Corollary: The parametric curve given by $x=\cosh (t), y=\sinh (t)$ is a hyperbola.
Fact 3: The derivatives of cosh and sinh are:

$$
\frac{d}{d x}(\sinh x)=\cosh x, \quad \frac{d}{d x}(\cosh x)=\sinh x
$$

Notice how there are no minus signs! That is, both sinh and cosh solve $y^{\prime \prime}=y$

Laplace Equation: Dirichlet Problem for Rectangles: I

Goal: Solve the Laplace equation $u_{x x}+u_{y y}=0$ on the rectangle $(0, a) \times(0, b)$ subject to the Dirichlet boundary conditions:

$$
\begin{array}{ll}
u(x, 0)=0 & u(0, y)=0 \\
u(x, b)=0 & u(a, y)=f(y)
\end{array}
$$

where $f(y)$ is a given function on $0 \leq y \leq b$.
Step 1: Assume that there is a non-trivial solution of the form $u(x, y)=X(x) Y(y)$. (Here, "non-trivial" means $u(x, y) \not \equiv 0$.) We have to find $X(x)$ and $Y(y)$.

If $u(x, y)=X(x) Y(y)$ solves $u_{x x}+u_{y y}=0$, then

$$
0=u_{x x}+u_{y y}=X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(y)=X Y\left(\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}\right)
$$

Therefore:

$$
\frac{X^{\prime \prime}(x)}{X(x)}=-\frac{Y^{\prime \prime}(y)}{Y(y)}
$$

This last equation has a function of x equal to a function of y. Therefore, both sides must equal some constant. To obtain solutions which are non-trivial, this constant must be positive, so call it λ^{2} :

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=\lambda^{2}
$$

Therefore, we have initial-value problems:

$$
\begin{array}{rlrl}
X^{\prime \prime}-\lambda^{2} X & =0 & Y^{\prime \prime}+\lambda^{2} Y & =0 \\
X(0) & =0 & Y(0) & =0 \\
Y(b) & =0 .
\end{array}
$$

Step 2: Solve the IVPs.
First, the general solution of the ODE for $X(x)$ is

$$
X(x)=c_{1} \cosh (\lambda x)+c_{2} \sinh (\lambda x) .
$$

The initial condition $X(0)=0$ gives $c_{1}=0$, and hence

$$
X(x)=c_{2} \sinh (\lambda x) .
$$

Second, the general solution to the ODE for $Y(y)$ is

$$
Y(y)=c_{3} \sin (\lambda y)+c_{4} \sin (\lambda y)
$$

The initial condition $Y(0)=0$ gives $c_{3}=0$, and hence

$$
Y(y)=c_{4} \sin (\lambda y)
$$

The initial condition $Y(b)=0$ gives $c_{4} \sin (\lambda b)=0$. We assume $c_{4} \neq 0$, so that

$$
\begin{aligned}
\sin (\lambda b)=0 & \Longrightarrow \lambda b=n \pi \text { for any } n \in \mathbb{Z} \\
& \Longrightarrow \lambda=\frac{n \pi}{b} \text { for any } n \in \mathbb{Z}
\end{aligned}
$$

We conclude that

$$
X(x)=c_{2} \sinh \left(\frac{n \pi}{b} x\right) \quad Y(y)=c_{4} \sin \left(\frac{n \pi}{b} y\right) .
$$

Laplace Equation: Dirichlet Problem for Rectangles: II

Goal: Solve the Laplace equation $u_{x x}+u_{y y}=0$ on the rectangle $(0, a) \times(0, b)$ subject to the Dirichlet boundary conditions:

$$
\begin{array}{ll}
u(x, 0)=0 & u(0, y)=0 \\
u(x, b)=0 & u(a, y)=f(y)
\end{array}
$$

where $f(y)$ is a given function on $0 \leq y \leq b$.
Summary: We assumed that there is a solution of the form $u(x, y)=X(x) Y(y)$.
By requiring $u_{x x}+u_{y y}=0$, together with three of the four boundary conditions, we were led to the functions

$$
\begin{aligned}
X_{n}(x) & =\sinh \left(\frac{n \pi}{b} x\right) \\
Y_{n}(y) & =\sin \left(\frac{n \pi}{b} y\right), \quad n \in \mathbb{N}
\end{aligned}
$$

So, our first conclusion is that the functions

$$
u_{n}(x, y)=X_{n}(x) Y_{n}(y)=\sinh \left(\frac{n \pi}{b} x\right) \sin \left(\frac{n \pi}{b} y\right)
$$

solve both the PDE and three of the four boundary conditions, for any positive integer $n \in \mathbb{N}$.
Step 3: Finally, we need to impose the fourth boundary condition $u(a, y)=f(y)$. For this, we need a little trick.

Since the functions $u_{1}, u_{2}, u_{3}, \ldots$ all satisfy the PDE and the homogeneous boundary conditions, it follows that any finite linear combination $c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{N} u_{N}$ does, too. It turns out that an "infinite linear combination" also does, as well. That is, we consider

$$
u(x, y)=\sum_{1}^{\infty} c_{n} u_{n}(x, y)=\sum_{1}^{\infty} c_{n} \sinh \left(\frac{n \pi}{b} x\right) \sin \left(\frac{n \pi}{b} y\right) .
$$

Step 4: We need to determine the coefficients c_{n} that make $u(a, y)=f(y)$ true. So, we require that the condition $u(a, y)=f(y)$ hold:

$$
f(y)=u(a, y)=\sum_{1}^{\infty} \underbrace{c_{n} \sinh \left(\frac{n \pi}{b} a\right)}_{\text {call this } B_{n}} \sin \left(\frac{n \pi}{b} y\right)=\sum_{1}^{\infty} B_{n} \sin \left(\frac{n \pi}{b} y\right) .
$$

This is a Fourier series for $f(y)$! Therefore, the coefficients c_{n} are determined by the formula

$$
\begin{array}{rlr}
c_{n} \sinh \left(\frac{n \pi}{b} a\right)=B_{n} & =\frac{1}{b} \int_{-b}^{b} f(y) \sin \left(\frac{n \pi}{b} y\right) d y \\
& =\frac{2}{b} \int_{0}^{b} f(y) \sin \left(\frac{n \pi}{b} y\right) d y . & \quad \text { (integrand is even) }
\end{array}
$$

Therefore,

$$
c_{n}=\frac{1}{\sinh \left(\frac{n a \pi}{b}\right)} \cdot \frac{2}{b} \int_{0}^{b} f(y) \sin \left(\frac{n \pi}{b} y\right) d y
$$

Laplace Equation: Dirichlet Problem for Disk Interior: I

Goal: Solve the Laplace equation $u_{x x}+u_{y y}=0$ on the disk $\left\{x^{2}+y^{2}<a^{2}\right\}$ subject to Dirichlet boundary conditions.

Preliminaries: Polar Coordinates.
The Laplace equation in polar coordinates (r, θ) is:

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 .
$$

In polar coordinates, the interior of the disk is the region $0 \leq r<a$.
A Dirichlet boundary condition means specifying $u(r, \theta)$ on the boundary circle $r=a$:

$$
u(a, \theta)=f(\theta),
$$

where $f(\theta)$ is a periodic function of period 2π.
We can now try to mimic the steps in the case of a rectangle.
Note: We will require that $u(r, \theta)$ be a bounded function (this will be important later).
Step 1: Assume there is a non-trivial solution of the form $u(r, \theta)=R(r) \Theta(\theta)$, where $\Theta(\theta)$ is periodic of period 2π. We have to find $R(r)$ and $\Theta(\theta)$.

If $u(r, \theta)=R(r) \Theta(\theta)$ solves $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$, then

$$
0=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=R^{\prime \prime} \Theta+\frac{1}{r} R^{\prime} \Theta+\frac{1}{r^{2}} R \Theta^{\prime \prime} .
$$

Therefore:

$$
r^{2} \frac{R^{\prime \prime}(r)}{R(r)}+r \frac{R^{\prime}(r)}{R(r)}=-\frac{\Theta^{\prime \prime}(\theta)}{\Theta(\theta)}
$$

This last equation has a function of r equal to a function of θ. Therefore, both sides must equal some constant, say λ :

$$
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}=-\frac{\Theta^{\prime \prime}}{\Theta}=\lambda .
$$

Therefore, we have ODEs:

$$
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0 \quad \Theta^{\prime \prime}+\lambda \Theta=0
$$

The separation constant λ must be non-negative (see textbook), so we write $\lambda=\mu^{2}$. Thus:

$$
r^{2} R^{\prime \prime}+r R^{\prime}-\mu^{2} R=0 \quad \Theta^{\prime \prime}+\mu^{2} \Theta=0
$$

Step 2: Solve the ODEs.
The 2nd-order linear ODE for $\Theta(\theta)$ is constant-coefficient, so

$$
\Theta(\theta)=c_{1} \cos (\mu \theta)+c_{2} \sin (\mu \theta)
$$

For $\Theta(\theta)$ to have period 2π, we need μ to be an integer - i.e.: $\mu=n \in \mathbb{Z}^{+}$.
The 2nd-order linear ODE for $R(r)$ is a Cauchy-Euler equation (appeared in HW 8). It has the general solution

$$
R(r)=c_{3} r^{n}+c_{4} r^{-n}
$$

For $u(r, \theta)$ to be bounded, we need $R(r)$ bounded on $[0, a]$. So, for $n \geq 0$, we need $c_{4}=0$:

$$
R(r)=c_{3} r^{n} .
$$

Laplace Equation: Dirichlet Problem for Disk Interior: II

Goal: Solve the Laplace equation $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ on the disk $\{r<a\}$ subject to the Dirichlet boundary condition $u(a, \theta)=f(\theta)$.

Summary: We assumed that there is a (bounded) solution of the form $u(r, \theta)=R(r) \Theta(\theta)$, where Θ has period 2π.

By requiring $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$, together with the requirements that $u(r, \theta)$ be bounded and $\Theta(\theta)$ be 2π-periodic, we were led to the functions

$$
\begin{aligned}
& R_{n}(r)=r^{n} \\
& \Theta_{n}(\theta)=c_{3} \cos (n \theta)+c_{4} \sin (n \theta) .
\end{aligned}
$$

So, our first conclusion is that the functions

$$
\begin{aligned}
& u_{n}(r, \theta)=r^{n} \cos (n \theta) \\
& v_{n}(r, \theta)=r^{n} \sin (n \theta), \quad n \in \mathbb{Z}_{\geq 0} .
\end{aligned}
$$

Step 3: Finally, we need to impose the boundary condition $u(a, \theta)=f(\theta)$. For this, we need the same superposition trick as for the rectangle.

That is: We consider the "infinite linear combination"

$$
u(r, \theta)=\frac{c_{0}}{2} u_{0}(r, \theta)+\frac{k_{0}}{2} v_{0}(r, \theta)+\sum_{1}^{\infty}\left[c_{n} u_{n}(r, \theta)+k_{n} v_{n}(r, \theta)\right] .
$$

Since $u_{0}(r, \theta) \equiv 1$ and $v_{0}(r, \theta) \equiv 0$, we have:

$$
u(r, \theta)=\frac{c_{0}}{2}+\sum_{1}^{\infty}\left[c_{n} r^{n} \cos (n \theta)+k_{n} r^{n} \sin (n \theta)\right]
$$

Step 4: We need to determine the coefficients c_{n}, k_{n} that make $u(a, \theta)=f(\theta)$ true. So, we require that $u(a, \theta)=f(\theta)$ hold:

$$
f(\theta)=u(a, \theta)=\frac{c_{0}}{2}+\sum_{1}^{\infty}\left[c_{n} a^{n} \cos n \theta+k_{n} a^{n} \sin n \theta\right] .
$$

This is a Fourier series for $f(\theta)$! Therefore, the coefficients c_{n}, k_{n} are determined by the formulas

$$
\begin{aligned}
& a^{n} c_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos n \theta d \theta \\
& a^{n} k_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin n \theta d \theta
\end{aligned}
$$

For Clarification: Cauchy-Euler Equations

Def: A Cauchy-Euler equation is a 2nd-order linear ODE of the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0, \tag{CE}
\end{equation*}
$$

where $p, q \in \mathbb{R}$ are constants.
Notice that $x=0$ is a regular singular point of this ODE.
We learned how to solve Cauchy-Euler equations (HW \#8). The trick was to make the substitutions

$$
\begin{aligned}
t & =\ln x \\
u(t) & =y\left(e^{t}\right) .
\end{aligned}
$$

You showed that these substitutions transform (CE) into

$$
u^{\prime \prime}+(p-1) u^{\prime}+q u=0 .
$$

This is a 2nd-order linear ODE with constant coefficients! Yay!
We solve (\star) by writing its characteristic equation

$$
\lambda^{2}+(p-1) \lambda+q \lambda=0 .
$$

There are three possibilities:
(1) Real, distinct roots $\left(\lambda_{1}, \lambda_{2}\right)$:

$$
\begin{align*}
& y\left(e^{t}\right)=u(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& \Longrightarrow y(x)=c_{1} x^{\lambda_{1}}+c_{2} x^{\lambda_{2}} . \tag{x>0}
\end{align*}
$$

(2) Real, repeated roots (λ) :

$$
\begin{align*}
& y\left(e^{t}\right)=u(t)=c_{1} e^{\lambda t}+c_{2} t e^{\lambda t} \\
& \Longrightarrow y(x)=c_{1} x^{\lambda}+c_{2} x^{\lambda} \ln (x) . \tag{x>0}
\end{align*}
$$

(3) Complex conjugate roots $(\mu \pm i \nu)$:

$$
\begin{align*}
& y\left(e^{t}\right)=u(t)=e^{\mu t}\left[c_{1} \cos (\nu t)+c_{2} \sin (\nu t)\right] \\
& \Longrightarrow y(x)=x^{\mu}\left[c_{1} \cos (\nu \ln (x))+c_{2} \sin (\nu \ln (x))\right] . \tag{x>0}
\end{align*}
$$

