Laplace Transform: Examples

Def: Given a function f(¢) defined for ¢ > 0. Its Laplace transform is the
function, denoted F'(s) = L{f}(s), defined by:

F(s) = L{f}(s) = / T et d

(Issue: The Laplace transform is an improper integral. So, does it always exist? i.e.: Is the

function F'(s) always finite? Answer: This is a little subtle. We’'ll discuss this next time. )

Fact (Linearity): The Laplace transform is linear:

L{ah(t) +cafa(D)} = at LI} + ca L{f2(1)}-

1
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Example 5: L{t"} =

Useful Fact: Euler’s Formula says that

e = cost +isint
e =cost —isint

Therefore,

1 . . 1 .
cost = 5(6“f +e ™), sint = 2—@,(6” —e .



Laplace Transform: Key Properties

Recall: Given a function f(t) defined for t > 0. Its Laplace transform is
the function, denoted F'(s) = L{f}(s), defined by:

F(s) = L{f}(s) = / T et d

Notation: In the following, let F'(s) = L{f(t)}.

Fact A: We have
L{e"f(t)} = F(s —a).

Fact B (Magic): Derivatives in ¢ — Multiplication by s (well, almost).

ctroy=(3) - () = sre - s0)
)
0

s F(s
L")} = ( ) ' (f( )) = s"F(s) — sf(0) = f'(0)
—f'(0)

:
s" F(s)
" —£(0)
L)} = f(- : -)( )
s _ £(n—2 0
1 —f"D(0)
= §"F(s) = "' f(0) —--- = sf"72(0) — fF7D(0).

Fact C (Magic): Multiplication by ¢ — Derivatives in s (almost).

LLLF(1)} = —F/(s)
LA (1)} = (~1)"F(s).



Laplace Transform: Existence

Recall: Given a function f(t) defined for t > 0. Its Laplace transform is
the function defined by:

Fis) = £7}6s) = [ et

0

Issue: The Laplace transform is an improper integral. So, does it always
exist? i.e.: Is the function F'(s) always finite?

Def: A function f(t) is of exponential order if there is a threshold M > 0
and constants K > 0, a € R such that

1f(t)| < Ke™, whent > M.

Equivalently: There is a threshold M > 0 and a constant a € R such that
t

the function ——= is bounded when ¢ > M (meaning that |—-
e e

Theorem: Let f(t) be a function that is:
(1) continuous;
(2) of exponential order (with exponent a).
Then:
(a) F(s) = L{f(t)}(s) exists for all s > a; and
(b) Sll)rglo F(s)=0.

Example: The function f(t) = exp(#?) is not of exponential order.

Remark: If f(t) is not continuous, or not of exponential order, then the
Laplace transform may or may not exist.



Inverse Laplace Transform: Existence
Want: A notion of “inverse Laplace transform.” That is, we would like to

say that if F'(s) = L{f(t)}, then f(t) = L Y F(s)}.

Issue: How do we know that £ even has an inverse £-!? Remember, not all
operations have inverses.

To see the problem: imagine that there are different functions f(¢) and
g(t) which have the same Laplace transform H(s) = L{f} = £{g}. Then

LY H(s)} would make no sense: after all, should L7{H} be f(t) or g(t)?
Fortunately, this bad scenario can never happen:

Theorem: Let f(t),g(t) be continuous functions on [0, 00) of exponential

order. If L{f} = L{g}, then f(t) = g(t) for all t € [0, 00).
Def: Let f(t) be continuous on [0, c0) and of exponential order.
We call f(t) the inverse Laplace transform of F(s) = L{f(t)}. We
write f = L71{F}.
Fact (Linearity): The inverse Laplace transform is linear:

L e Fi(s) + caFy(s)} = e1 LTHE(s)} 4 e LTHE(s)}.

Inverse Laplace Transform: Examples

Example 1: El{ L } = e

sS—a

1 tn—l
Example 2: E_l{ } = e

(s — } (n—1)!
=

Fact A: We have L{e"f(t)} = F(s — a).
Therefore:

cos bt

Example 3: E_l{

—sin bt

. -l
Example 4: £ {32 e

LHF(s—a)}=e"L7THF(s)}).



Partial Fractions

Setup: Given a rational function

)
Saying that R is rational means that both p and ¢ are polynomials.

Begin by factoring the denominator g(x) over R. (The phrase “over R”
means, e.g., that 23 + 4x factors as z(2? +4). That is, we do not allow com-
plex numbers. Factoring into z(z + 2i)(x — 2¢) would be factoring “over C.”)

Case 1: ¢(x) has linear distinct factors, meaning that we can express ¢(z) =
(x —ay) -+ (x —a,). In this case, we write
x A A
q(x) -

x_an

Case 2: ¢(x) has linear factors, where some are repeated. Corresponding to
this factor like (z — a)?, we write

Case 3: ¢(x) has a quadratic factor, not repeated. Corresponding to a factor
like (z — (u+v))(x — (n —iv)) = (x — p)* + V2, we write

A(x — pu) + By

(o= pF+ T

Case 4: ¢(z) has repeated quadratic factors. Corresponding to a factor like
((z — p)* +v*)", we write
Ai(@ —p)+ Biv  As(w—p)+Bov  Ap(z —p)+ By
(@ —pp2+v> (2 —p)p?+v2)? (@ —p)?+ 02"

Example: Here is a partial fraction decomposition:

T2 + 2 A B Ca45D  Br+SF
(x—3)2(2>+25) x—-3 (z—3)2 2>+25 (2?+25)%




Review: Intro to Power Series

A power series is a series of the form

(0. ¢]
Zanm—xo )" = ag + a1 (v — x0) + as(r — 20)* + - - -

n=0

It can be thought of as an “infinite polynomial.”
The number z is called the center.

A power series may converge for some values of x, but diverge for other
values of x. A power series will always converge at its center x = zy (do you
see why?).

Question: Given a power series, for what values of x does it converge, and
for what values of x does it diverge?

Theorem: Given a power series > a,(z — x¢)". Then either:

(i) The power series converges only at x = xj. (Case R = 0)

(ii) The power series converges for all x € R. (Case R = +00)

(iii) The power series converges on an interval |x — x| < R, and diverges
if |z — x| > R.

The number R is called the radius of convergence.

Note: This theorem says nothing about the convergence/divergence at the
endpoints of the interval. Those have to be checked separately.

Finding the Interval of Convergence:
(1) Determine the center x.
(2) Determine the radius of convergence R. Use the Ratio Test to do this.
(3) Check convergence/divergence at the endpoints.



Review: Power Series are Functions

Given a power series Y a,(x — )", we can think of it as a function of x:

E QZ—SL’O

n=0

Domain of f(z): The set of all z-values for which the series converges. That
is, the domain is exactly the interval of convergence.

Although every power series (with R > 0) is a function, not all functions
arise in this way. i.e.: Not all functions are equal to a convergent power
series! Those functions which are have a special name:

Def: A function f(z) is analytic at x = x if it is equal to a power series

oo

f(x) = Z an(x — z0)"

n=0
that has positive radius of convergence R > 0.

Analytic functions are the best-behaved functions in all of calculus. For
example, every analytic function is infinitely-differentiable:

oo

Theorem: Let f(x) be analytic at z, say f(x Z an(z—x0)" with radius

n=0
of convergence R > 0. Then:

(a) f is infinitely-differentiable on the interval (zo — R, x¢ + R).
(b) The derivative of f is:

= Z na,(x — :co)”_l (%)

(¢) The indefinite integral of f is:

+1

/f d:c—C—l—Z x;ioln (1)

(d) The radii of convergence of (x) and (1) are both R.

Note: Again, this theorem says nothing about convergence/divergence at
the endpoints. Those have to be checked separately.



Review: Taylor Series

Recall that a power series is any series of the form

(0.9]
an(x — 20)" = ag + ai(x — x0) + as(x — 20)* + - - -
n=0

Def: Let f(z) be infinitely-differentiable on an interval |z — x| < R.
The Taylor series of f at x = x is the power series

— f(z (o " (2o 2
> 00— oy = o) + e — ) + T — -

So, by definition: every Taylor series is a power series.
Conversely, every power series with R > 0 is a Taylor series:

Theorem: If f(x) = > a,(x — xo)" is a power series with radius of conver-
gence R > 0, then
£0) ()
nl
(So: The given power series Y _ a,(x—x)" is exactly the Taylor series of f(x).)

Corollary: If f(z) is analytic at z, then

£ (y
f(x) _ Z f ( 0) (x . 370)”-

n!

n=0

So: If f is analytic at x = xy, then the Taylor series of f does converge to f.

There are functions infinitely-differentiable at xy but not analytic at x.
For those functions, the Taylor series at xy will only equal f(z) at x = g —
even if the Taylor series converges on an interval (zg — R, xg + R)!

exp(—%) ifz#0
0 if x = 0. "
infinitely-differentiable on all of R. Its derivatives at x = 0 are f(0) = 0
for each n = 0,1, 2,.... Therefore, its Taylor series at x = 0 is

Classic Scary Example: The function f(x) = {

0+%x+%x2—|—-~

which converges on all of R to the function g(z) = 0.
Point: Our function f(x) (which is defined on all of R) is only equal to its
Taylor series (which is also defined on all of R) at x = 0. Weird!



Review: Examples of Taylor Series

Many of the functions we care about are analytic, meaning that they are
equal to a power series. For example:

2 3
e’ —Zn'—u +§+§+
. 1,271—&-1 $3 565 1;7
00 nx2n x2 134 :CG
cos:c:z%(—l) (2n)!:1_§+1_a+...

It’s also good to know about

0 2n+1 3 5 7
x x°  x’
inhz = e o4z 42
sinh x 20(2n+1) x—|—3'—|—5'—|—7l—|—
o 2 2 4 6
x ¢ xt
coshx:ngzo on)] 1+§+Z+ﬁ+

Again: If f(x) is analytic, meaning that it is equal to a power series, then
that power series is the Taylor series of f(z).

Review: Taylor Polynomials

Def: The nth-degree Taylor polynomial of f(x) is the polynomial
(o) F (o)

1! n!

To(x) = f(xo) + (x — o) + -+ (x — x0)".

Main Point of Taylor Series: The Taylor polynomials T,,(x) are the best
polynomial approximations to f(x) near the center x = .
Example: The first Taylor polynomial

Ti(z) = f(xo) + f'(0)(x — o)

is the best linear approximation near x = zy. After all, T1(z) is exactly the
tangent line to f(x) at © = xy.
Similarly: The second Taylor polynomial

Ty(z) = f(xo) + f'(w0)(x — x0) +

is the “tangent parabola” at x = x(. Et cetera.

fl/(xo)
2!

(z — )



Series Solutions to ODEs: Ordinary Points
Goal: Given a 2nd-order linear ODE (with non-constant coefficients)
y"+p(@)y + q(x)y = 0.
We usually cannot solve for y(z) explicitly.
Hope: Maybe we can express y(x) as a power series: y(x Z an(z—10)"

If we can do this, then the partial sums (i.e.: the Taylor polynomlals) are
polynomial approximations to y(x).

Def: Given a 2nd-order linear ODE

y" + p(x)y + q(x)y = 0.

A point 7 is a ordinary point if both p(z), ¢(z) are analytic at z.
A point z( is a singular point otherwise.

Theorem: Given a 2nd-order linear ODE

y" + p(x)y + q(x)y = 0.

Suppose that z is an ordinary point.
Then the general solution may be written as a power series

o0
Z an(x — 20)" = apy1(x) + a1y2(x),
n=0

where ag, a; are arbitrary constants, and y;(z),y2(x) are power-series solu-
tions (and hence analytic at xy). Moreover, {y;(z),y2(x)} is a fundamental
set of solutions.

Also: the radii of convergence for the series solutions of y;(z), y2(z) are at
least the minimum of the radii of convergence of the series for p(z) and ¢(x).



Fourier Series: Intro

Recall: A power series is an “infinite polynomial.”
Given a function f(z), the Taylor series of f(x) is a power series where
: , (n)
the coefficients are determined by some formula (a, = fT(,mo))

Often, the Taylor series of f(x) does converge to f(x). So, Taylor series
let us approximate f(x) by a sequence of polynomials.

Today: A trigonometric series is an “infinite trig polynomial.”

Given a function f(x), the Fourier series of f(x) is a trigonometric series
where the coefficients are determined by some formula (below).

Often, the Fourier series of f(z) does converge to f(x). So, Fourier series
let us approximate f(x) by a sequence of “waves.”

Def: A trigonometric series is an infinite series of the form

% + ; (an cos(%x) + b, Siﬂ(%x)).

Given a function f(x), its Fourier series is the trigonometric series whose
coefficients are given by:

a, = %/_i f(x) cos(%x) dx (A)

b, = %/LL f(x) sin(%x) dx. (B)

So, every Fourier series is a trigonometric series. Conversely, every conver-
gent trigonometric series is a Fourier series:

Fact: If f(z) = % + nz_:l <an cos(%x) + b, sin(%x)) is a trigonometric

series which converges, then its coefficients an, b, are given by (A)-(B) above.

Fourier Convergence Theorem: Suppose f(z) is periodic of period 2L.
Suppose also that f(x) and f'(z) are piecewise-continuous on [—L, L).

Then the Fourier series of f converges to f(x) at all points where f is
continuous. It converges to 3[f(z+) + f(z—)] at all points where f is discon-
tinuous.



Linear Algebra Review: Orthogonal Bases

Recall: A basis {wy, ..., wy} for a subspace V' C R" is orthogonal if:
o The basis vectors are mutually orthogonal: w; - w; = 0 (for ¢ # j).

Given a basis B, it is generally a pain to find the B-coordinates of a given
vector. But when B is an orthogonal basis, there is a very simple formula:

Fact: Let {wy,...,w;} be an orthogonal basis for a subspace V' C R".
Then every vector y € V' can be written:

Yy Wi Y - Wi
Wi - Wi Wi - W

Wi

This is sometimes called the Fourier expansion of y € V. Hmm.....

Fourier Series: A Powerful Geometric Perspective

Def: The inner product of two functions f(z), g(x) on an interval [a, b] is

b
(f.9) = / F(2)g(x) d

We say that f(x) and g(x) are orthogonal functions if (f,g) = 0.
A set of functions fi(z), fo(z),... is an orthogonal set of functions if
every pair in the set is orthogonal: (f;, f;) = 0 for i # j.

Fact: Consider the functions

() = cos(%x), wy(x) = sin(%x).

Then the set of functions {vy,vs, ..., wy, ws,...} is an orthogonal set.

Observation: Let f(x) be a function. Its Fourier coefficients are exactly
/ f(z cos )dx = L/, )
(Vn, vn)
/ f(z sin ) dor = (f tn)
(W, wn)”

Therefore, the Fourier series of f ( ) is just

1)~ o™ 2 o 2 ™

Uo, Uo Un,

This is an (infinite-dimensional) analogue of the linear algebra above!



Useful for Fourier Series: Even and Odd Functions

Facts:
o Even function x Even function = Even function
o Odd function x Odd function = Even function
o Odd function x Even function = Odd function.

L
o If f(x) is odd, then /_L f(z)=0.

o If f(x) is even, then /_i flx) = 2/0L f(x).

N.B.: A function f(x) can be even, odd, neither, or both. Most functions
are neither. The only function that is both even and odd is f(x) = 0.



Intro to PDEs

ODE: Differential equation whose solutions u = u(t) are functions of one
variable. Derivatives involved are ordinary derivatives u’ or u” or u”, etc.
Initial-value Problem: Diff eqn + Initial values specified

PDE: Differential equation whose solutions u = u(x,y) are functions of two
variables (or more). Derivatives involved are partial derivatives u,,u, or
Uz, Ugy, Uyy, €LC.

Dirichlet Problem: Diff eqn + Boundary values specified

Neumann Problem: Diff eqn + “Normal directional derivatives” specified.

Recall: Differential equations (both ODEs and PDEs) are classified by their
order: i.e., the highest-order derivative appearing in the equation.

1st-Order PDEs: Most 1st-order PDEs can be converted into a 1st-order
(nonlinear) ODE system.

This is called the “method of characteristics.” We won’t study it. The
point is that 1st-order PDESs reduce to the study of 1st-order ODE systems.

2nd-Order PDEs: Our understanding of 2nd-order PDEs is largely based
around understanding three foundational examples:

o Laplace Equation: g, + uy, = 0

o Heat Equation: u,, = u,

o Wave Equation: u,,; — u,, = 0.
These three equations are very different from each other. We’ll only talk
about the Laplace equation.

Example Problems: Solve the Laplace equation u,, + u,, = 0 subject to:
(D1) Dirichlet conditions on a Rectangle
(D2) Dirichlet conditions on the Interior of a Disk
(D3) Dirichlet conditions on the Exterior of a Disk
(D4) Dirichlet conditions on a Circular Sector
(D5) Dirichlet conditions on a Semi-infinite Strip
(N1) Neumann conditions on a Rectangle
(N2)

N2) Neumann conditions on the Interior of a Disk

We'll discuss problems (D1) and (D2). Problems (D3) and (D4) are HW.



Review: Circular Trigonometric Functions

Recall: The functions cos and sin are defined by
1 T —iT : T —ix
cosxzﬁ(e +e ), sinx = —(e" —e ).

Notice that cos is even, while sin is odd.

Fact 1: The Taylor series of cos and sin centered at x = 0 are

cosxT = Z (—1) 2", sing = Z Lm%ﬂ.

- (2n+1)!

Fact 2: The functions cos and sin satisfy the following pythagorean identity:
cos?(x) + sin®(z) = 1.

Corollary: The parametric curve given by x = cos(t), y = sin(t) is a unit circle.

Fact 3: The derivatives of cos and sin are:

4 (i) = P
dx Sinxr —COSZL’, d]j COSxT) = Sin x.

Thus, both cos and sin solve the 2nd-order ODE given by |y’ = —y

New: Hyperbolic Trigonometric Functions
Recall: The functions cosh and sinh are defined by
1 _ . 1 _
coshz = 5(6“ +e "), sinhx = 5(696 —e 7).
Notice that cosh is even, while sinh is odd.

Fact 1: The Taylor series of cosh and sinh centered at x = 0 are

(e}

. ]' 2n : _ 1 2n+1
cosh:c—z(Qn)!x , smhx—zmx .

0 0

[ee]

Fact 2: The functions cosh and sinh satisfy the following pythagorean identity
cosh?(z) — sinh?(z) = 1.
Corollary: The parametric curve given by x = cosh(t),y = sinh(¢) is a hyperbola.

Fact 3: The derivatives of cosh and sinh are:

d
%(sinh x) = coshz, ﬁ(cosh x) = sinh z.

Notice how there are no minus signs! That is, both sinh and cosh solve |y =y




Laplace Equation: Dirichlet Problem for Rectangles: 1

Goal: Solve the Laplace equation u,, + u,, = 0 on the rectangle (0,a) x (0,b) subject to
the Dirichlet boundary conditions:

u(z,0) =0 u(0,y) =0
u(z,b) =0 u(a,y) = f(y),
where f(y) is a given function on 0 <y < b.

Step 1: Assume that there is a non-trivial solution of the form u(z,y) = X (z)Y (y). (Here,
“non-trivial” means u(x,y) #Z 0.) We have to find X (z) and Y (y).
If u(z,y) = X ()Y (y) solves uyy + uyy = 0, then

X// Y//
X 'y ) '

0= Uy + Uyy = X"(2)Y (y) + X (2)Y"(y) = XY <_ + <
Therefore:
X"x) _ Y'(y)
X () Y(y)
This last equation has a function of x equal to a function of y. Therefore, both sides

must equal some constant. To obtain solutions which are non-trivial, this constant must be
positive, so call it A\?:

X_// — _Y_/, = \2
X Y '
Therefore, we have initial-value problems:
X"—XNX =0 Y+ XY =0
X(0)=0 Y(0)=0

Y (b) = 0.

Step 2: Solve the IVPs.
First, the general solution of the ODE for X(x) is

X(z) = ¢; cosh(Ax) + co sinh(Az).
The initial condition X (0) = 0 gives ¢; = 0, and hence
X(x) = ¢y sinh(\x).
Second, the general solution to the ODE for Y (y) is
Y (y) = essin(Ay) + ¢y sin(Ay).
The initial condition Y'(0) = 0 gives ¢z = 0, and hence
Y (y) = casin(Ny).
The initial condition Y'(b) = 0 gives ¢4 sin(Ab) = 0. We assume ¢4 # 0, so that
sin(Ab) =0 = Ab=nm forany n € Z
— /\:n%foranynEZ.

We conclude that

b

X(x) = cgsinh (%x) Y(y) =ca sin(my)




Laplace Equation: Dirichlet Problem for Rectangles: 11

Goal: Solve the Laplace equation u,, + u,, = 0 on the rectangle (0,a) x (0,b) subject to
the Dirichlet boundary conditions:

u(z,0) =0 u(0,y) =0
u(z,b) =0 u(a, y) = f(y)v
where f(y) is a given function on 0 <y < b.
Summary: We assumed that there is a solution of the form u(z,y) = X (2)Y (y).

By requiring w,, +u,, = 0, together with three of the four boundary conditions, we were
led to the functions

X, (x) = sinh (%x)

Y. (y) = sin(%y), n € N.

So, our first conclusion is that the functions
Un(2,7) = Xn(2)Y,(y) = sinh(%@ sin(%@

solve both the PDE and three of the four boundary conditions, for any positive integer n € N.

Step 3: Finally, we need to impose the fourth boundary condition u(a,y) = f(y). For this,
we need a little trick.

Since the functions uy, us, us, ... all satisfy the PDE and the homogeneous boundary
conditions, it follows that any finite linear combination ciu; + cous + - - - + cyuy does, too.
It turns out that an “infinite linear combination” also does, as well. That is, we consider

x,y) = i Crtn(T,y) = icn sinh(n%a:) sin(%y).

Step 4: We need to determine the coefficients ¢, that make u(a,y) = f(y) true. So, we
require that the condition u(a,y) = f(y) hold:

fy) = u(a,y) ch&nh(—a)sm( ) ZB sm( )

call this B,

This is a Fourier series for f(y)! Therefore, the coefficients ¢, are determined by the formula

¢y sinh (%a) =B, = %/_l; f(y) sin(%y) dy

9 b
= —/ fy) Sin(—mr y) dy. (integrand is even)
b/, b

- dy.
c smh / fly sm > Y

Therefore,




Laplace Equation: Dirichlet Problem for Disk Interior: I

Goal: Solve the Laplace equation ., + u,, = 0 on the disk {2? + y* < a*} subject to
Dirichlet boundary conditions.

Preliminaries: Polar Coordinates.

The Laplace equation in polar coordinates (r,0) is:
1
Upr + —Up + —2U99 =0.
r r

In polar coordinates, the interior of the disk is the region 0 < r < a.
A Dirichlet boundary condition means specifying u(r,#) on the boundary circle r = a:

u(a,0) = f(6),
where f(0) is a periodic function of period 2.
We can now try to mimic the steps in the case of a rectangle.

Note: We will require that u(r, 0) be a bounded function (this will be important later).

Step 1: Assume there is a non-trivial solution of the form wu(r,0) = R(r)©(f), where ©(0)
is periodic of period 27. We have to find R(r) and ©(0).
If u(r,0) = R(r)O(0) solves u,, + 1u, + -5ugg = 0, then
0=y, + lur + %u(;g =R'O + lR’@ + %R@”.
r T r r
Therefore: , ) .
R RO 6'0)
R(r) — R(r) o)
This last equation has a function of r equal to a function of 8. Therefore, both sides
must equal some constant, say A:

R// R/ (__)//

T’2E+7’E =5 =M
Therefore, we have ODEs:
r’R'+rR — AR =0 0"+ 10 = 0.
The separation constant A must be non-negative (see textbook), so we write A = p?. Thus:
R+ rR — >R =0 0" + 1?6 = 0.

Step 2: Solve the ODEs.

The 2nd-order linear ODE for ©(0) is constant-coefficient, so

O(0) = ¢y cos(ub) + cosin(ub).

For ©(6) to have period 27, we need p to be an integer —i.e.: u=n € Z".

The 2nd-order linear ODE for R(r) is a Cauchy-Euler equation (appeared in HW 8). It
has the general solution

R(r) = c3r™ + cyr™ ™.

For u(r,8) to be bounded, we need R(r) bounded on [0,a]. So, for n > 0, we need ¢4, = 0:

R(r) = c3r™.



Laplace Equation: Dirichlet Problem for Disk Interior: II

Goal: Solve the Laplace equation u,, + %ur + T%uag = 0 on the disk {r < a} subject to the
Dirichlet boundary condition u(a, ) = f(0).

Summary: We assumed that there is a (bounded) solution of the form u(r, ) = R(r)©(0),
where © has period 27.

By requiring u,,.+ %uT—l— T%umg = 0, together with the requirements that u(r, ) be bounded
and ©(0) be 2m-periodic, we were led to the functions

@n(e) c3 cos(nf) + cqsin(nb).
So, our first conclusion is that the functions

up(r,0) = r" cos(nd)

U (1, 0) = 1" sin(nd), n € Zso.

Step 3: Finally, we need to impose the boundary condition u(a,f) = f(6). For this, we
need the same superposition trick as for the rectangle.
That is: We consider the “infinite linear combination”

k;

u(r, ) = 2

uo(r, 0) + (r,0) + i [entn (1, 0) + kyv,(r, 0)].

2

Since ug(r,0) = 1 and vo(r, 0) = 0, we have:

u(r,0) = 50 + Z e cos(nb) + k,r" sin(nf)).
1

Step 4: We need to determine the coefficients ¢, k,, that make u(a, ) = f() true. So, we
require that u(a,d) = f(6) hold:

o0

Co n n _:
f(0) = u(a,d) = 5t Z [cna™ cosnf + kpa” sinnd)].

1

This is a Fourier series for f(0)! Therefore, the coefficients c,, k, are determined by the
formulas

2m
ac, = ! f(0) cosnd db
T Jo
1 2w
a"k, = — f(6)sinnd do.
T Jo




For Clarification: Cauchy-Euler Equations

Def: A Cauchy-Euler equation is a 2nd-order linear ODE of the form

2?y" + pry +qy = 0, (CE)

where p, ¢ € R are constants.
Notice that x = 0 is a regular singular point of this ODE.

We learned how to solve Cauchy-Euler equations (HW #8). The trick was
to make the substitutions

t=Inx
u(t) = y(e).
You showed that these substitutions transform (CE) into
u" 4+ (p— D' + qu = 0. (%)

This is a 2nd-order linear ODE with constant coefficients! Yay!
We solve (x) by writing its characteristic equation

M4 (p—DA+g\=0.

There are three possibilities:
(1) Real, distinct roots (A1, Ag):

y(e') = u(t) = c1e™ + cpe

— |y(z) = c1a™ + ™. (x > 0)

(2) Real, repeated roots (A):

y(e) = u(t) = e + ey te

— |y(z) = c12™ + 2’ In(x). (x > 0)

(3) Complex conjugate roots (u + iv):

y(e") = u(t) = e [c; cos(vt) + cosin(vt)]

— |y(z) = 2*[cy cos(vIn(x)) + cosin(vIn(z))] . (x > 0)




