Problems: Tue 6/27

1. Sketch the graph of \(f(x) = 1 + 2 \cos x \).

2. Sketch the graph of \(g(x) = \frac{3x + 1}{x} \).

 Hint: \(\frac{a}{c} + \frac{b}{c} = \frac{a + b}{c} \).

3. Sketch the graph of the following functions.

 (a) \(F(x) = |\sin x| \).

 (b) \(G(x) = \sin(|x|) \).

4. Find the domain of \(h(x) = \frac{\tan x}{2^x \log_3(x)} \).

Even & Odd Functions

Def: Let \(f(x) \) be a function.

- We say \(f \) is **even** if: \(f(-x) = f(x) \). (Symmetry in \(y \)-axis)
- We say \(f \) is **odd** if: \(f(-x) = -f(x) \). (Symmetry in the origin)

5. Determine whether the following polynomials are even, odd, or neither.

 (a) \(p(x) = x^5 + 2x^3 + 7x \)

 (b) \(q(x) = x^4 - x \)

 (c) \(r(x) = x^6 - 3x^2 + 1 \)

 Do you see a pattern? How can you quickly tell whether a polynomial is even, odd, or neither?

6. Are there any functions that are **both** even and odd? If so, which ones?

7. If \(f \) and \(g \) are even functions, is \(f + g \) also even?
Exercises: Discontinuities: Thu 6/29

1A. Sketch the graph of \(f(x) = \begin{cases} x & \text{if } x \neq 0 \\ 2 & \text{if } x = 0. \end{cases} \)

1B. Sketch the graph of \(g(x) = \frac{x^2}{x}. \)

2A. Sketch the graph of \(\text{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0. \end{cases} \)

2B. Sketch the graph of \(F(x) = \frac{|x|}{x}. \)

3A. Sketch the graph of \(H(x) = \begin{cases} \frac{1}{x^2} & \text{if } x < 0 \\ \sin(x) & \text{if } x \geq 0. \end{cases} \)

3B. Sketch the graph of \(K(x) = \sin\left(\frac{1}{x}\right). \)

Exercises: Continuity

4. (a) Show that \(f(x) = 2^x(x^3 - 5) \) is continuous on \((-\infty, \infty).\)

(b) Show that \(g(x) = \frac{e^x}{\sin x} \) is continuous at \(x = \frac{\pi}{2}.\)

(c) Show that \(h(x) = \cos(\ln x) \) is continuous on \((0, \infty).\)

5. Prove that the equation \(2x + e^x = 3 \) has a solution in the interval \((0, 1).\)
1. Let \(f(x) = \frac{x - 2}{x^2 - 2x} \).

(a) Sketch the graph of \(f(x) \).

(b) Find \(f(2) \), if it exists.

(c) Find \(\lim_{x \to 2} f(x) \), if it exists.

(d) Is \(f(x) \) continuous at \(x = 2 \)? Give complete justification.

(e) Is \(f(x) \) continuous at \(x = 0 \)? Give complete justification.

(f) Is \(f(x) \) continuous at \(x = 3 \)? Give complete justification.
Problems: Wed 7/5

1. Evaluate \(\lim_{x \to 2\pi} \frac{x^3}{\cos x} \)

2. Evaluate \(\lim_{h \to 0} \frac{(3 + h)^2 - 9}{h} \)

3. Evaluate \(\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t} \)

4. Show that \(f(x) = \begin{cases} x^2 + 2 & \text{if } x > 0 \\ 2 - x & \text{if } x \leq 0 \end{cases} \) is continuous at \(x = 0 \).

5. Evaluate \(\lim_{x \to 0} \frac{|x|}{x} \)

6. Evaluate \(\lim_{x \to 0} x^8 \arctan(x) \).

7. Evaluate \(\lim_{x \to 0} x^8 \arctan\left(\frac{1}{x}\right) \).
Problems: Thu 7/6

1. Show that \(f(x) = \frac{e^x}{\sin x} \) is continuous at \(x = \frac{\pi}{2} \).

2. Show that \(g(x) = 2^x(x^3 - 5) \) is continuous on \((-\infty, \infty)\).

3. Show that \(F(x) = \begin{cases} \frac{\sin(\pi x)}{2 - x} & \text{if } x < 1 \\ 0 & \text{if } x = 1 \\ \ln(x^2) & \text{if } x > 1 \end{cases} \) is continuous on \((-\infty, \infty)\).

4. Prove that the equation \(2x + 3^x = 4 \) has a solution in the interval \((0, 1)\).
Problems: Vertical Asymptotes: Mon 7/10

1. Evaluate \(\lim_{x \to 1^-} \frac{x - 2}{(x - 1)^2} \) and \(\lim_{x \to 1^+} \frac{x - 2}{(x - 1)^2} \).

2. Evaluate \(\lim_{x \to 3^+} \ln(x^2 - 9) \).

3. Evaluate \(\lim_{x \to 2\pi^-} x \csc x \) and \(\lim_{x \to 2\pi^+} x \csc x \).

4. Find all vertical asymptotes of \(h(x) = \frac{x^3 - x}{x^2 - 6x + 5} \).

Problems: Horizontal Asymptotes

5. Evaluate \(\lim_{x \to \infty} \frac{x + 2}{\sqrt{9x^2 + 1}} \)

6. Evaluate \(\lim_{x \to -\infty} \frac{x + 2}{\sqrt{9x^2 + 1}} \)

7. Evaluate \(\lim_{x \to \infty} \frac{\sin^2 x}{x^3} \)
Problems: Tue 7/11

1. Evaluate \(\lim_{x \to \frac{\pi}{2}^-} e^{\tan x} \) and \(\lim_{x \to \frac{\pi}{2}^+} e^{\tan x} \).

2. Find all vertical and horizontal asymptotes of \(h(x) = e^{\frac{3}{x-2}} \).

3. Evaluate \(\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \).

4. Evaluate \(\lim_{x \to 0} x^4 e^{\left|\cos\left(\frac{1}{x}\right)\right|} \).

5. Let \(f(x) = \begin{cases} x \sin(1/x) & \text{if } x = 0 \\ 1 & \text{if } x \neq 0. \end{cases} \)

Is \(f(x) \) continuous or discontinuous at \(x = 0 \)? Fully justify your answer.

6. Evaluate \(\lim_{x \to \infty} [\ln(\sin x) - \ln(x)] \).