Problem Set VIII - Math 53h

Due Tuesday, June 2, 5pm, to office 380-383Z

Exercise 1: Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} map; let Γ be the periodic orbit generated by a periodic solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}=F(\mathbf{x})$. Explain the construction of a Poincare map of this orbit.
Exercise 2: Consider an \mathbb{R}^{2} autonomous system expressed in polar coordinates:

$$
r^{\prime}=r(r-1)(r-2), \quad \theta^{\prime}=1 ;
$$

(1) find closed orbit and equilibrium point of this system;
(2) indicate the limiting behavior of all other non-constant solutions.

Exercise 3: Consider the system

$$
x^{\prime}=y-x^{3}+8 x, \quad y^{\prime}=-x .
$$

(1) Sketch the argument showing that there is a Poincare map $P: v^{+} \rightarrow v^{+}$ using the flow of this system, where v^{+}is the positive part of the y-axis.
(2) Show in details that there is one and only on fixed point $\bar{\alpha}$ of P, and for any $\alpha \in(0, \infty), \lim _{n \rightarrow \infty} P^{n}(\alpha)=\bar{\alpha}$.
(3) Indicate the implication of (2) to the limiting behavior of solutions of this system.
(Hint: A similar system is studied in details in [page 262-270, Hirsch].)
Exercise 4: [Page 65, Brendle] Problem 5.1.
Exercise 5: [Page 65, Brendle] problem 5.3.
Exercise 6: (Complete the proof of Poincare-Bendixson Theorem) Consider $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a C^{1}-map, and let Ω be the ω-limit set of a solution $\mathbf{x}(t)$, which we know is non-empty, bounded, and contains no equilibrium point of $\mathbf{x}^{\prime}=F(\mathbf{x})$. Suppose Ω contains the orbit Γ of a non-constant periodic solution $\mathbf{x}(t)$. Show that $\Omega=\Gamma$.
(Hint: Using that Ω is connected, thus if $\Omega \neq \Gamma$, then there is a sequence $z_{n} \in \Omega-\Gamma$ so that $z_{n} \rightarrow \bar{z} \in \Gamma$. Then pick a transversal line segment S passing through \bar{z}. Argue that $S \cap \Omega$ contains more than one point, violating that $\#(\Omega \cap S) \leq 1$.)

