Problem Set II - Math 53h

Due Tuesday, 4/14, 5pm, to office 380-383Z

Exercise 1: Let $A \in M_{n \times n}(\mathbb{C})$. Let λ be an eigenvalue of A of multiplicity v. Show that for any integer $k \geq v$,

$$
\operatorname{ker}(A-\lambda I)^{k}=\operatorname{ker}(A-\lambda I)^{v}
$$

Exercise 2: For $A \in M_{n \times n}(\mathbb{C})$, we denote by $\operatorname{tr}(A)$ the trace of A.
(i) Show that for S invertible, $\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}(A)$.
(ii) Show that for every $n \times n$ matrix A, $\operatorname{det}(\exp (t A))=e^{t \operatorname{tr}(A)}$.

Exercise 3: Let $A \in M_{n \times n} \mathbb{C}$ with distinguished eigenvalues $\lambda_{1}, \cdots, \lambda_{m}$. Let $f(\lambda)=\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{m}\right)$. Show that A is diagonalizable if and only if $f(A)=0$.
Exercise 4: Let

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -2 & 1 & -1 \\
0 & 0 & -2 & 1 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

(i). Find its eigenvalues, their multiplicities, and their corresponding generalized eigenspaces.
(ii). Verify that \mathbb{C}^{4} is a direct sum of the generalized eigenspaces of A.
(iii). Find L in the $A=L+N$ decomposition. Find S and a diagonal D so that $L=S D S^{-1}$.
(iv). Find N and verify that $L N=N L$ and $N^{4}=0$.
(v). Evaluate $\exp (A t)$.

Exercise 5: Let

$$
A=\left[\begin{array}{cccc}
0 & 1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

(i). Find its eigenvalues, their multiplicities, and their corresponding generalized eigenspaces.
(ii). Verify that \mathbb{C}^{4} is a direct sum of the generalized eigenspaces of A.
(iii). Find L in the $A=L+N$ decomposition. Find S and a diagonal D so that $L=S D S^{-1}$.
(iv). Find N and verify that $L N=N L$ and $N^{4}=0$.
(v). Evaluate $\exp (A t)$.

Hints:

1. Can use that for $k \geq v$, g.c.d. $\left((x-\lambda)^{k}, p_{A}(x)\right)=(x-\lambda)^{v}$.
2. For i, can use $p_{A}(x)=x^{n}-\operatorname{tr}(A) x^{n-1}+\cdots$. For (ii), can first show this identity for A diagonalizable; or use $L+N$ decomposition.
3. First show in case $A=L+N$ has L diagonal; or use that g.c.d. $((\lambda-$ $\left.\left.\lambda_{k}\right)^{v_{k}}, f(\lambda)\right)=\left(\lambda-\lambda_{k}\right)$.
