Problem Set II — Math 53h

Due Tuesday, 4/14, 5pm, to office 380-383Z

Exercise 1: Let $A \in M_{n \times n}(\mathbb{C})$. Let λ be an eigenvalue of A of multiplicity v. Show that for any integer $k \ge v$,

$$\ker(A - \lambda I)^k = \ker(A - \lambda I)^v$$

Exercise 2: For $A \in M_{n \times n}(\mathbb{C})$, we denote by $\operatorname{tr}(A)$ the trace of A. (i) Show that for S invertible, $\operatorname{tr}(S^{-1}AS) = \operatorname{tr}(A)$. (ii) Show that for every $n \times n$ matrix A, $\operatorname{det}(\exp(tA)) = e^{t \operatorname{tr}(A)}$.

Exercise 3: Let $A \in M_{n \times n} \mathbb{C}$ with distinguished eigenvalues $\lambda_1, \dots, \lambda_m$. Let $f(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_m)$. Show that A is diagonalizable if and only if f(A) = 0.

Exercise 4: Let

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 1 & -1 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

(i). Find its eigenvalues, their multiplicities, and their corresponding generalized eigenspaces.

(ii). Verify that \mathbb{C}^4 is a direct sum of the generalized eigenspaces of A.

(iii). Find L in the A = L + N decomposition. Find S and a diagonal D so that $L = SDS^{-1}$.

(iv). Find N and verify that LN = NL and $N^4 = 0$.

(v). Evaluate $\exp(At)$.

Exercise 5: Let

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

(i). Find its eigenvalues, their multiplicities, and their corresponding generalized eigenspaces.

(ii). Verify that \mathbb{C}^4 is a direct sum of the generalized eigenspaces of A.

(iii). Find L in the A = L + N decomposition. Find S and a diagonal D so that $L = SDS^{-1}$.

(iv). Find N and verify that LN = NL and $N^4 = 0$.

(v). Evaluate $\exp(At)$.

Hints:

1. Can use that for $k \ge v$, $g.c.d.((x - \lambda)^k, p_A(x)) = (x - \lambda)^v$. **2.** For i, can use $p_A(x) = x^n - \operatorname{tr}(A)x^{n-1} + \cdots$. For (ii), can first show this identity for A diagonalizable; or use L + N decomposition.

3. First show in case A = L + N has L diagonal; or use that g.c.d. $((\lambda - \lambda)^2)$ $\lambda_k)^{v_k}, f(\lambda)) = (\lambda - \lambda_k).$