## Problem Set I - Math 53h

April 2, 2015

Exercise 1. Find the general solution of the logistic differential equation with constant harvesting,

$$
x^{\prime}=x(1-x)-h,
$$

for all value $h>0$.
Exercise 2. Consider a first-order linear equation of the form $x^{\prime}=a x+f(t)$, where $a \in \mathbb{R}$. Let $y(t)$ be any solution of this equation. Prove that the general solution is $y(t)+c e^{a t}$ for $c \in \mathbb{R}$ arbitrary.

Exercise 3. Consider a first order, linear, non autonomous equation of the form $x^{\prime}=a(t) x$.
(a). Find a formula involving integrals for the solution of this system.
(b). Prove that your formula gives the general solution of this system.

Exercise 4. First-order ODE need not have solutions that are defined for all time.
(a). Find the general solution of the equation $x^{\prime}=x^{2}$.
(b). Discuss the domain over which each solution is defined.
(c). Give an example of a differential equation for which he solution satisfying $x(0)=0$ is defined only for $-1<t<1$.
Exercise 5. Given an ODE $x^{\prime}=p(t) x$, where $p(t)$ is a differentiable and periodic with period $T$. Prove that all solutions of this equation are periodic with period $T$ if and only if

$$
\int_{0}^{T} p(t) d t=0 .
$$

Exercise: Consider the ordinary differential equation $x^{\prime}(t)=A x(t)$, where

$$
A=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]
$$

(This is a slight modification of an example that we discussed in class.)
(i) Please show that the eigenvalues of $A$ lie on the imaginary axis. Deduce from this that any solution of the differential equation $x^{\prime}(t)=A x(t)$ must be $2 \pi$-periodic, i.e. $x(t+2 \pi)=x(t)$.
(ii) Please show that there exists a positive definite $2 \times 2$ matrix $S$ such that $S A+A^{T} S=0$.
(iii) Define a function $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $Q(x)=x^{T} S x$, where $S$ denotes the matrix you found in part (ii). Please show that any solution curve is contained in a level curve of $Q$. In other words, if $x(t)$ is a solution of the ordinary differential equation $x^{\prime}(t)=A x(t)$, then the function $t \mapsto Q(x(t))$ is constant.
(iv) Please show that every solution curve is an ellipse, and compute its principal axes. Does your result depend on the choice of the initial vector $x(0)$ ? Please explain. (Hint: Use part (iii).)

