1. Suppose that V, W are vectors spaces over the field F. Find a basis for $\mathcal{L}(\mathcal{L}(V, W), W)$.

2. Describe the null space and range of each of the following linear maps:

 (a) $f : \mathbb{R}^3 \to \mathbb{R}^2$, where $f(x, y, z) = (3x + 2y, x - z)$

 (b) $g : \mathcal{P} \to \mathbb{R}$, where \mathcal{P} is the set of all polynomials and
 \[
 g(p) = \int_{-1}^{1} p(x)dx.
 \]

 (c) $h : \mathcal{P}(3) \to \mathbb{R}^2$, where $h(a_0 + a_1x + a_2x^2 + a_3x^3) = (a_1 + a_2, a_3 - a_0)$.

3. Suppose that W is a subspace of V and that $f : V \to U$ is an isomorphism. Show that
 \[
 f(W) = \{ u \in U \mid u = f(w) \text{ for some } w \in W \}
 \]
 is a subspace of U. What is the dimension of $f(W)$?