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Two old questions
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Basic notions and notation

(M, ω) symplectic manifold.

Hamiltonian diffeomorphisms:
Take H : [0,1]×M → R. (Hamiltonian)
Vector field XH : ω(XH , ·) = dH.
Hamiltonian flow: ϕt

H . Hamiltonian diffeo:= time-1 map ϕ1
H .

Ham(M, ω) := {ϕ1
H} / Symp(M, ω).

Hofer norm :

To a Hamiltonian H, define

||H||1,∞ :=

∫ 1

0
(max

M
Ht −min

M
Ht )dt .

Now for ϕ ∈ Ham, define

||ϕ|| := inf{||H||1,∞ | ϕ = ϕ1
H}.
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Hofer’s metric

Hofer metric: For ϕ,ψ ∈ Ham,

dH(ϕ,ψ) := ||ϕ−1ψ||.

. Defines a bi-invariant metric on Ham(M, ω):
bi-invariant: dH(ϕ,ψ) = dH(θϕ, θψ) = dH(ϕθ, ψθ).
dH(ϕ,ψ) = dH(ψ,ϕ).
dH(ϕ,ψ) ≤ dH(ϕ, θ) + dH(θ, ϕ).
non-degeneracy: dH(ϕ,ψ) = 0 ⇐⇒ ϕ = ψ. (Hofer, Polterovich,
Lalonde-McDuff)

Rather remarkable due to lack of compactness
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Basic notions from large-scale geometry

Φ : (X1,d1)→ (X2,d2) a map between metric spaces.

Quasi-isometric embedding: if ∃A ≥ 1,B > 0 s.t.

1
A

d1(x , y)− B ≤ d2(Φ(x),Φ(y)) ≤ Ad1(x , y) + B.

Eg: 1. Z ↪−→ R, 2. R −→ Z, x 7→ bxc.

Quasi-isometry: Φ QI embedding and ∃C s.t. ∀y ∈ X2

d2(y ,Φ(X1)) ≤ C.

Eg: 1. Z QI∼ R, 2. R
QI
6∼ R2, 3. X bdd =⇒ X QI∼ pt . “space viewed from far away"
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The Kapovich-Polterovich Question

Theorem (Polterovich 1998)

Ham(S2) admits a QI embedding of R.

Question (Kapovich-Polterovich 2006, McDuff-Salamon: Problem 21)

Ham(S2)
QI∼ R?
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Our first theorem

Theorem (CG., Humilière, Seyfaddini; Polterovich-Shelukhin)

Ham(S2) admits QI embedding of Rn for every n.

Corollary: Ham(S2)
QI
6∼ R. But we can say more.

Quasi-flat rank: rank(X, d) = max{n : Rn QI
↪−→ X}.

X QI∼ Y =⇒ rank(X ) = rank(Y ).
rank(Ham(S2)) =∞ by our theorem
rank(Rn) = n, rank(G) <∞ for G connected finite-dim Lie group.
(Bell-Dranishnikov)

So, Ham(S2) is quite “large". Remark: We also show it is not coarsely proper.
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A question of Fathi

Homeo0(Sn, ω) : group of volume-preserving homeomorphisms of the n-sphere, in
component of the identity.

Theorem (Fathi, 70s)

Homeo0(Sn, ω) is simple when n ≥ 3.

(Definition of simple: no non-trivial proper normal subgroups.) Simple =⇒ no
quotient groups.)

Question (Fathi, 70s)

Is Homeo0(S2, ω) simple?

Only closed manifold M for which simplicity of Homeo0(M, ω) not known.
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Our second theorem

Recall: commutator subgroup [G,G] /G. A group is perfect if G = [G,G]. “Perfect
group has no additive invariants."

Theorem (CG., Humilière, Seyfaddini)

Homeo0(S2, ω) is not perfect.

In particular, Homeo0(S2, ω) is not simple.

Although at first glance unrelated to the first theorem, proof also uses ideas from
Hofer geometry.
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Historical Remarks: results on QI type of Ham

Σ surface of positive genus:

Lalonde-McDuff: Rn QI
↪−→ Ham(Σ), for every n. (1995)

Polterovich: (C([0,1]), ‖ · ‖∞)
QI
↪−→ Ham(Σ). (1998).

Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-
Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang
(2016).

More general manifolds: Entov-Polterovich, Kawamoto, Khanevsky,
Lalonde-Polterovich, Lalonde-McDuff, McDuff, Ostrover, Polterovich-Shelukhin, Py,
Schwarz, Usher, Stojisavljevic-Zhang, ...
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Historical Remarks: results on the simplicity question

Ulam (“Scottish book", 1930s): Is Homeo0(Sn) simple?
30s-60s: Homeo0(M) simple (Ulam, von Neumann, Anderson, Fisher,
Chernavski, Edwards-Kirby)
60s-70s: Diff∞0 (M) simple (Smale, Epstein, Herman, Mather, Thurston)
More structure: Volume preserving diffeos (Thurston), symplectic case
(Banyaga), volume preserving homeomorphisms with n ≥ 3 (Fathi) — here
there is a natural homomorphism (eg flux), kernel is simple.
2020: Homeoc(D2) not simple (CG., Humilière, Seyfaddini). Very different
from diffeomorphism group case (Le Roux)

Remark: Fathi’s proof uses a “fragmentation" property; our work + Le Roux shows
it fails in dimension 2.
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Idea of the proofs
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Twist maps

Monotone twist Hamiltonians: H : S2 → R of the form H(θ, z) = 1
2h(z), where

h ≥ 0,h′ ≥ 0,h′′ ≥ 0.

−1 1

H = 1
2h(z) flow

ϕt
H(θ, z) = (θ + 2πth′(z), z)
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Our QI embeddings

To prove our first theorem, suffices to produce QI embedding of
Rn
≥0 = {(t1, . . . , tn) : ti ≥ 0}.

Our embedding:

Discs: Di = {(z, θ) : 1− 1
i+1 ≤ z ≤ 1}. Note: Di ⊃ Di+1, Area(Di) = 1

2(i+1) .

Hi : monotone twists such that supp(Hi) = Di . <

z = 1− 1
i+1

supp(Hi) = Di

Define

Φ : Rn
≥0,||·||∞ → Ham(S2,dhofer ), (t1, . . . , tn) −→ ϕt1

H1
◦ . . . ◦ ϕtn

Hn
.

Claim A: Φ is a QI embedding.
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Non-simplicity of Homeo0(S2, ω).

To prove our second theorem, we write down a particular normal subgroup.

Say that ϕ ∈ Homeo0(S2, ω) has finite energy if there exists a sequence of
Hamiltonian diffeomorphisms that are bounded in Hofer’s distance and converge
in C0 to ϕ.

Definition: FHomeo0(S2, ω) = {finite Hofer energy homeomorphisms}.

Theorem B: FHomeo0(S2, ω) / Homeo0(S2, ω).

Non-perfectness follows from this by an old argument of Epstein-Higman.

Hard part: why proper?

Remark: Our results on QI type should extend to FHomeo.
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Why proper? Infinite twists

Let p+ be the north pole. An infinite twist Hamiltonian is an F : S2 \ {p+} −→ R
such that

F (z, θ) =
1
2

f (z),

where f : [−1,1) −→ R satisfies f ′, f ′′ ≥ 0 and the growth condition

limd−→∞
1
d

f (1− 2
d + 1

) =∞.

Claim B: Any infinite twist is not in FHomeo.
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New spectral invariants

To prove Claims A and B, we use Hutchings’ Periodic Floer Homology PFH to
construct

µd , ηd : Ham(S2) −→ R,

every even d ∈ N.

We show:
The µd and ηd are Hofer Lipschitz, eg

|µd (ϕ)− µd (ψ)| ≤ Cd dH(ϕ,ψ),Cd = 2d

so bound Hofer’s distance from below.
They can be computed for Monotone twists.
The ηd are C0 continuous and extend to Homeo. The µd are linear for
compositions of monotone twists.
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Comparison with previous work

We also used PFH spectral invariants to show Homeoc(D2, ω) is not simple in
previous work.

New challenge here: need invariants that depend only on the time-1 map, not the
choice of Hamiltonian. In the disc case, can restrict to Hamiltonians that vanish
near boundary. No clear analogue here.

One of our solutions to get around this: take a suitable linear combination of
spectral invariants −→ ηd . (For the µd , the idea is to homogenize and restrict to
mean normalize Hamiltonians.)

Dan Cristofaro-Gardiner PFH spectral invariants and the large-scale geometry of Hofer’s metric 18 / 36



More about the proofs
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Computing the µd

The µd are used to prove our QI theorem. We first establish:
Monotone twist formula:

µd (ϕ1
H) =

∑d
i=1 H

(
−1 + 2i

d+1

)
− d H(0). <

z = 1− 2
d+1

z = −1 + 2
d+1

z = −1 + 4
d+1

z = 1− 4
d+1d = 4

Linearity for monotone twists: µd (ϕt1
H1
◦ ϕt2

H2
) = t1µd (ϕ1

H1
) + t2µd (ϕ1

H2
).
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Sketch of Proof (n = 2 case)

Φ : R2
≥0 → Ham(S2), (t1, t2) −→ ϕt1

H1
◦ ϕt2

H2
.

(Recall, Hi : monotone twist, supp(Hi) = {(θ, z) : 1− 2
di
≤ z ≤ 1},di = 2(i + 1).)

Let t = (t1, t2). Recall Φ(t) = ϕt1
H1
◦ ϕt2

H2
. Goal: show ∃C1,C2 st

C1‖t− s‖∞ ≤ dH (Φ(t),Φ(s)) ≤ C2‖t− s‖∞.

We’ll just do the lower bound: By Hofer Lipschitz property (which says
|µd (ϕ)− µd (ψ)| ≤ 2d dH(ϕ,ψ))

max
i

∣∣∣∣ µdi (Φ(t))

2di
−
µdi (Φ(s))

2di

∣∣∣∣ ≤ dH (Φ(t),Φ(s)) .
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From previous slide:

max
i

∣∣∣∣ µdi (Φ(t))

2di
−
µdi (Φ(s))

2di

∣∣∣∣ ≤ dH (Φ(t),Φ(s)) .

Claim: LHS = ‖A(t− s)‖∞ where A = 1
2di

[
µd1(ϕ1

H1
) µd1(ϕ1

H2
)

µd2(ϕ1
H2

) µd2(ϕ1
H2

)

]
Proof: By Linearity

of µd (details left as an exercise.)

Claim: A is invertible. Proof: see next slide.

Since A is invertible can write
‖t− s‖∞
‖A−1‖op

≤ ‖A(t− s)‖∞,

where ‖A−1‖op = denotes the operator norm of A−1 : (R2, ‖ · ‖∞)→ (R2, ‖ · ‖∞).

So, take C1 = 1
‖A−1‖op

, hence the lower bound. Remark: We can arrange that our
QI embedding is in the kernel of Calabi, answering a 2012 question of Polterovich.
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Why is A invertible?

Claim: A is invertible. Recall from previous slide: A = 1
2di

[
µd1(ϕ1

H1
) µd1(ϕ1

H2
)

µd2(ϕ1
H2

) µd2(ϕ1
H2

)

]
Proof: follows from the next two observations.
Observation 1: µdi (ϕ

1
Hi

) > 0. Proof:

<

z = 1− 2
d

z = 1− 2
d+1

µdi

(
ϕ1

Hi

)
= Hi

(
1− 2

di+1

)
> 0

Observation 2: µd1(ϕ1
H2

) = 0. Proof:

<

z = 1− 2
d1+1

supp(H2)
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Next theorem: properness of FHomeo

Claim: an infinite twist does not have finite energy.

Proof: The ηd are C0 continuous and extend to Homeo0. By Hofer continuity, we
get the linear growth property: for any ψ ∈ FHomeo0,

limsupd−→∞
ηd (ψ)

d
<∞.

On the other hand, for infinite twists we show

limd−→∞
ηd (ψ)

d
=∞.

To do this, we use a combinatorial model for the ηd of Monotone twists. Rough
idea: the ηd should recover the “Calabi invariant" asymptotically, can verify this for
monotone twists by direct computation.
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PFH spectral invariants
(impressionistic sketch of the construction)
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The PFH of ϕ: the setup

Let ϕ ∈ Ham(S2, ω). Recall the mapping torus

Yϕ = S2
x × [0,1]t/ ∼, (x ,1) ∼ (ϕ(x),0).

Canonical two-form ωϕ induced by ω.
Canonical vector field R := ∂t . Captures the dynamics of ϕ.

{Periodic Points of ϕ} 1:1←→ {Closed Orbits of R}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt , ωϕ).

PFH = ECH in this setting. (Hutchings)
There exists PFH spectral invariants cd "=" ECH spectral invariants in this setting.
(Hutchings)
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More details about PFH

PFH(ϕ) is homology of a chain complex PFC(ϕ). (ϕ non-degenerate)

PFC(ϕ): generated by (certain) "Reeb orbit sets" {(αi ,mi)}
αi distinct, embedded closed orbits of R
mi positive integer. (mi = 1 if αi is hyperbolic)

∂: counts certain J-holomorphic curves in R× Yϕ.

PFH(ϕ) is the homology of this chain complex.

Lee-Taubes: PFH(ϕ) independent of choices of J, ϕ.
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A J-hol curve contributing to 〈∂α, β〉

<

R

Yϕ

α

β

〈∂α, β〉 := # maps u : (Σ, j)→ (R× Yϕ, J) such that
J holomorphic: du ◦ j = J(u)du.
Asymptotic to α and β.
“ECH index” I = 1.
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The spectral invariants cd

To construct spectral invariants need two ingredients:

1. PFH(ϕ) has an action filtration. (twisted version)
PFHa(ϕ): what you see up to action level a ∈ R.

2. There exist (more or less) distinguished nonzero classes σd ∈ PFH(ϕ) for
d ∈ N.

Define:
cd (ϕ) := inf{a ∈ R : σd ∈ PFHa(ϕ)}.

In words: cd (ϕ) is the action level at which you first see σd .

Remark: d corresponds to the degree of the class.

Dan Cristofaro-Gardiner PFH spectral invariants and the large-scale geometry of Hofer’s metric 29 / 36



The µd

The numbers cd (ϕ) as defined depend on the choice of generating Hamiltonian
(because twisted PFH does). First step to remedy this: restrict to
mean-normalized Hamiltonians, that is∫

S2
Htω = 0

for all t . We show this gives a well-defined invariant cd on H̃am.

We next homogenize to get invariants µd on Ham:

µd (ϕ) := limn−→∞
cd (ϕ̃n)

n

where ϕ̃ is any lift of ϕ.
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The ηd

The µd are not in general C0-continuous, essentially due to the mean
normalization condition. To get mean normalized invariants, need a different trick.

Key computation: for even d ,

ηd (ϕ) := cd (ϕ)− d
2

c2(ϕ),

is independent of the choice of Hamiltonian for ϕ. We show in addition the ηd are
C0-continuous.
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Thank you!
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Bonus: twisted PFH.
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The reference cycle

To define twisted PFH, need in addition a (trivialized) reference cycle γ ⊂ Yϕ.
Using this we proceed as follows:

A twisted PFH generator is a pair (α,Z ), where α is a PFH generator and
Z ∈ H2(α, γd ) is a “capping".
The differential counts I = 1 curves C from (α,Z ) to (β,Z ′): that is
[C] + Z ′ = Z ∈ H2(α, γd ).

The action is given by: A(α,Z ) =
∫

Z ωϕ.

We produce γ by trivializing Yϕ via

S1 × S2 −→ Yϕ, (t , x) −→ (t , (ϕt
H)−1(x)),

and taking γ to be the push-forward of the invariant cycle over p−.

Dan Cristofaro-Gardiner PFH spectral invariants and the large-scale geometry of Hofer’s metric 34 / 36



Bonus II: comparison with the work of
Polterovich-Shelukhin.
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Polterovich-Shelukhin approach uses (orbifold) Lagrangian spectral invariants
on the symmetric product of S2.
PFH is also conceptually related to the symmetric product (cf Hutchings:
“https://floerhomology.wordpress.com/2013/07/18/symmetric-products-i/).
Rough idea:

degree d PFH orbit set "=" fixed point of the induced map on the d-fold
symmetric product
holomorphic curve counted by PFH differential "=" section of bundle of
symmetric products R× YSdϕ −→ R× S1.

Potentially very interesting to compare our approaches.
In fact, their invariants seem to agree with ours for monotone twists.
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