Problem 1. Consider the flow \(\{ \varphi_t \}_{t \in [0,1]} \) generated by a time dependent symplectic vector field \(X_t \) on a symplectic manifolds \((M, \omega)\). For each loop \(\gamma : S^1 \to M \), consider the surface \(\Gamma \) swept by \(\gamma \) under the flow, i.e. \(\Gamma(t,s) = \varphi_t(\gamma(s)) \) for any \(t \in [0,1] \) and \(s \in S^1 \).

(a) Show that the symplectic area of \(\Gamma \) is the flux of \(\{ \varphi_t \} \) through \(\gamma \)

\[
\langle \text{Flux}(\{ \varphi_t \}), [\gamma] \rangle = \int_{[0,1] \times S^1} \Gamma^* \omega
\]

(b) conclude that the flux though \(\gamma \) depends only on the homotopy class of \(\gamma \) and on the homotopy class of the path \(\{ \varphi_t \} \) relative its endpoints.

(c) Show that if \(\text{Flux}(\{ \varphi_t \}) = 0 \in H^1_R(M) \) then \(\varphi_t \) is isotopic with fixed endpoints to a path of Hamiltonian diffeomorphisms \(\psi_t \). Hint: need \(\text{Flux}(\{ \psi_t \}_{t \in [0,T]}) = 0 \) for all \(T \in [0,1] \).

Problem 2. Assume \(N \) is a coisotropic submanifold of \((M, \omega)\). Use Frobenius integrability theorem to show that \((TN)^\omega \) defines an integrable foliation on \(N \) whose leaves are isotropic submanifolds of \(M \).

Hint: check that for any vector fields \(X, Y \in (TN)^\omega \) their Lie bracket \([X,Y] \in (TN)^\omega \).

Problem 3. Assume \((M, \omega)\) is a symplectic manifold.

(a) Show that if \(X, Y \) are symplectic vector fields, then \([X,Y] \) is a Hamiltonian vector fields with Hamiltonian function \(\omega(X,Y) \); in particular, \(\mathcal{X}_{\text{ham}}(M) \) is a Lie algebra with \([\cdot,\cdot];\)

(b) the Poisson bracket of two smooth functions \(f, g \in C^\infty(M) \) is defined by

\[
\{f,g\} = \omega(X_f, X_g) = -\mathcal{L}_{X_f}g
\]

where \(X_f \) denotes the Hamiltonian vector field defined by \(f \). Show that \((C^\infty(M),\{\cdot,\cdot\})\) is a Lie algebra that is \{\cdot,\cdot\} is: (i) \(\mathbb{R} \)-bilinear (ii) skew-sym \(\{g,f\} = -\{f,g\} \) and (ii) satisfies Jacobi identity: \(\{f,\{g,h\}\} + \{g,\{h,f\}\} + \{h,\{f,g\}\} = 0; \)

(c) show that \(X_{\{f,g\}} = -[X_f,X_g] \) so the map \(f \mapsto -X_f \) is a surjective Lie algebra homomorphism; what is its kernel?

(d) show that \(\{f,g\} = 0 \iff \text{flow of } X_f \text{ preserves level sets of } g \iff \text{flow of } X_g \text{ preserves level sets of } f; \)

(e) consider a smooth function \(f : M \to \mathbb{R}^k \) where \(f = (f_1, \ldots, f_k) \) and \(\{f_i, f_j\} = 0 \) for all \(i, j \). Show that any regular level set of \(f \) is a coisotropic submanifold, the vector fields \(X_{f_i} \) are tangent to it, and moreover span the tangent space to its isotropic foliation.

Hint: \(\iota_{[X,Y]}\alpha = \mathcal{L}_X \iota_Y \alpha - \iota_Y \mathcal{L}_X \alpha = [\mathcal{L}_X, \iota_Y] \alpha \) for any form \(\alpha \).

Problem 4. Show that if \(\lambda \) is an eigenvalue of a symplectic matrix, then \(1/\lambda, \bar{\lambda} \) and \(1/\bar{\lambda} \) are also eigenvalues (with same multiplicity, and in fact with same Jordan form).

Problem 5. Show that \(U(n) \) is the maximal compact subgroup of \(\text{Sympl}(2n) \) by showing that any compact subgroup \(G \) can be conjugated into \(U(n) \).

Hint: Show that there exists a symplectic, symmetric, positive definite matrix \(P \) which is also \(G \)-invariant, i.e. \(A^T P A = P \) for all \(A \in G \).
Problem 6. Show that the maps below are isomorphisms

\[\pi_1(\text{Sympl}(2n)) \longrightarrow \pi_1(U(n)) \xrightarrow{\det} \pi_1(S^1) = \mathbb{Z} \]

where the first map is induced by \(A \to (AA^T)^{-1/2}A \).

Problem 7. Assume \(W \) is a linear subspace of \(\mathbb{C}^n \) with the standard hermitian structure.

(a) show that \(W \) is Lagrangian iff \(W^\perp \omega = iW \);

(b) if \(W \) is Lagrangian then \(\{e_1, \ldots, e_n\} \) is an orthonormal basis of \(W \) iff \(\{e_1, \ldots, e_n\} \) is a unitary basis of \(\mathbb{C}^n \);

(c) conclude that \(U(n) \) acts transitively on the Lagrangian Grassmanian \(\Lambda(n) \) with isotropy subgroup \(O(n) \) and thus

\[\Lambda(n) \cong_{\text{homeo}} U(n)/O(n) \]

(d) finally show that the map below is an isomorphism

\[\pi_1(\Lambda(n)) = \pi_1(U(n)/O(n)) \xrightarrow{\det^2} \pi_1(S^1) = \mathbb{Z} \]

(e) what changes if instead we were looking at oriented Lagrangian subspaces?

Problem 8. Consider the tautological bundle \(\tau_n \) over \(\Lambda(n) \): the fiber of \(\tau \) at \(W \in \Lambda(n) \) is \(W \). Show that the complexification of \(\tau_n \) is a trivial complex bundle.