Recommended Problems # 5

Problem 1. Show that if M is compact Kahler then the Jacobian

$$\text{Pic}^0(M) \cong H^{0,1}(M)/H^1(M,\mathbb{Z})$$

is naturally a complex torus of dimension $b_1(M)$.

Hint: Use the exponential sequence and argue that $H^1(M,\mathbb{Z}) \to H^1(M,\mathbb{C}) \overset{\pi^{0,1}}\to H^{0,1}(X)$ is injective with discrete image, aka a lattice.

Problem 2. Show that the curvature decreases in holomorphic subbundles and increases in quotients. Specifically, let F be a holomorphic subbundle of E. Fix a hermitian metric on E which induces one on F and $E/F = Q$, and consider Θ_E, Θ_F and Θ_Q the curvatures of the associated Chern connections. Show that

$$\Theta_F \leq \Theta_E|_F \quad \Theta_Q \geq \Theta_E|_Q$$

with equality iff the second fundamental form A of F in E is zero.

Hint: Use formulas in PS #3.

Problem 3. Assume $E \to M$ is a holomorphic vector bundle which has finitely many global sections $\{s_1,\ldots,s_N\} \in H^0(M,E)$ spanning each fiber of E. Show that $\Theta_E \geq 0$.

Hint: the assumption is equivalent to $M \times \mathbb{C}^N \to E$ is surjective.

Problem 4. Assume L is a holomorphic line bundle on a compact Kahler manifold M. Show that L has a Chern connection with positive curvature iff $c_1(L) > 0$ (i.e. $c_1(L) \in H^2_{DR}(M)$ has a positive representative.)

Hint: Use Global $\partial\bar{\partial}$ lemma.

Problem 5. Assume $L \to M$ is a holomorphic line bundle on a compact Kahler manifold.

(a) show that L has a Hermitian-Yang-Mills metric.

(b) show that for the HYM metric, the Chern form c_λ is naturally a complex torus of dimension $b_1(M)$.

Hint: Start with some hermitian metric h and use the global $\partial\bar{\partial}$ lemma to modify it to one e^h for which the HYM equation has a solution.

Problem 6. Assume E, F are holomorphic vector bundles on M with a HYM metric. Show that the induced metrics on $E \otimes F$, Hom(E,F) and E^* are also HYM. Show that the sum $E \oplus F$ is HYM \iff E and F have the same constant $\lambda_E = \lambda_F$ \iff their slopes are equal $\mu(E) = \mu(F)$.

Problem 7. Fix (M,g,ω) a compact Kahler manifold. Assume $E \to M$ is a holomorphic vector bundle with a HYM metric i.e. a solution to

$$\text{tr}_g R^\nabla = \lambda \text{Id}_E.$$

Show that the constant $\lambda \in \mathbb{R}$ depends only on $c_1(E)$ and rank E, and in fact only on the slope

$$\mu(E) = \frac{\text{deg}(E)}{\text{rank}(E)} \quad \text{where} \quad \text{deg}(E) = \int_M c_1(E) \omega^{n-1}.$$

Hint: In fact, the HYM equation is equivalent to

$$iR^\nabla \wedge \frac{\omega^{n-1}}{(n-1)!} = \lambda \frac{\omega^n}{n!} \text{Id}_E \implies i\text{tr}R^\nabla \wedge \frac{\omega^{n-1}}{(n-1)!} = \lambda \text{rank} E \frac{\omega^n}{n!}.$$

Problem 8. On a compact genus g Riemann surface Σ show that we get a correspondence

$\{\text{moduli space of degree 0 holo line bundles}\} \leftrightarrow \{\text{moduli space of flat } U(1)-\text{connections}\}$

\[
\begin{array}{c|c}
\text{exp sequence} & \text{holonomy} \\
\hline
\text{Pic}^0(\Sigma) = H^1(\Sigma,\mathcal{O})/H^1(\Sigma,\mathbb{Z}) = \mathbb{C}^g/\mathbb{Z}^{2g} & \text{Hom}(\pi_1(\Sigma), S^1) = (S^1)^{2g}
\end{array}
\]
Problem 9. Show that on a compact Kahler manifold M the diagrams commute:

$$
\begin{array}{ccc}
A^k & \xrightarrow{d} & A^{k+1} \\
\downarrow^{\pi^{0,k}} & & \downarrow^{\pi^{0,k+1}} \\
A^{0,k} & \xrightarrow{\bar{\partial}} & A^{0,k+1}
\end{array}
\quad \Rightarrow
\begin{array}{ccc}
H^k(M, \mathbb{C}) & \xrightarrow{\iota^*} & H^k(M, \mathcal{O}) \\
\downarrow^{deRham \cong} & & \downarrow^{Dolbeault \cong} \\
H^k_{dR}(M, \mathbb{C}) & \xrightarrow{\pi^{0,k}} & H^{0,k}(M)
\end{array}
$$

What happens if we project onto (p, q) with $p > 0$?