## Reductions for Homology Computations

January 23, 2014

The purpose of this note is just to record the two results we showed in class.

**Proposition 0.1** Let X be an abstract simplicial complex. Suppose that  $\sigma$  is a maximal simplex of X, i.e. so that it is not contained in any other simplex. Let d denote the dimension of  $\sigma$ . Suppose further that  $\sigma' \subseteq \sigma$  is a face, of dimension d-1, and suppose further that  $\sigma'$  is not contained in any simplex other than  $\sigma$  and itself. Then we may form the subcomplex  $X' \subseteq X$ , by removing the simplices  $\sigma$  and  $\sigma'$ . Then the result is that the linear transformation

$$i_l: H_l(X') \longrightarrow H_l(X)$$

induced by the inclusion  $X' \hookrightarrow X$  is an isomorphism.



X is on the left and X' is on the right.

**Proposition 0.2** Let X be any abstract simplicial complex, and let  $\sigma$  be any maximal simplex in X. The maximality of  $\sigma$  means that we may remove  $\sigma$  from X, and obtain from it a subcomplex X'. Let d denote the dimension of  $\sigma$ . We observe that  $\partial^d(\sigma)$  is a cycle in  $C_{d-1}(X')$ , because all the (d-1)-simplices in X are also in X'. Consequently, the equivalence class  $[\partial^d(\sigma)]$  is an element  $\xi_{\sigma} \in H_{d-1}(X')$ . Then the relationship between the homology of X and the homology of X' is given as follows.

1.  $H_l(X) \cong H_l(X')$  whenever  $l \neq d, d-1$ .

- 2.  $H_{d-1}(X) \cong H_{d-1}(X')/(\xi_{\sigma})$ , where  $(\xi_{\sigma})$  denotes the span of the vector  $\xi_{\sigma}$ . Note that if  $\xi_{\sigma}$  is the zero element in  $H_{d-1}(X')$ , then  $H_{d-1}(X) \cong H_{d-1}(X')$ .
- 3. If  $\xi_{\sigma} \neq 0$  in  $H_{d-1}(X')$ , then  $H_d(X) \cong H_d(X')$ . If  $\xi_{\sigma} = 0$ , then  $H_d(X) = H_d(X') \oplus F$ , where F is the ground field.