Math 149 - Problem Set 1 - Due Tuesday, January 28

1. For any finite partially ordered set (X, \leq) , we define the *nerve* of (X, \leq) to be the abstract simplicial complex with vertex set X, and where a family of points $\{x_0, x_1, \ldots, x_n\}$ spans a simplex if and only if there is a permutation σ of the set $\{0, 1, \ldots, n\}$ so that

$$x_{\sigma(0)} < x_{\sigma(1)} < x_{\sigma(2)} < \dots < x_{\sigma(n)}$$

Let Π_n denote the partially ordered set of proper non-trivial subsets of the set $\{0, 1, \ldots, n\}$. Determine the all the homology groups of the nerve of Π_n for n = 1, 2, 3 and 4, with coefficients in any field. Also, determine familiar spaces which are homeomorphic to $|\Pi_n|$. Make a conjecture for the homology for all values of n.

- 2. Find triangulations for the projective plane, the Klein bottle, and the two holed torus, and determine their homology directly without peeking at other sources.
- 3. For any finite metric space X and parameter R > 0, we define the Vietoris-Rips complex of X with respect to R, V(X, R), to be the abstract simplicial complex with vertex set X, and so that a set $\{x_0, \ldots, x_n\}$ is an n-simplex if and only if $d(x_1, x_j) \leq R$ for all $0 \leq i, j \leq n$. Let X be the collections of points on the unit circle $\{\pm 1, 0), (0, \pm 1), (\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2})\}$. These are the points of a regular octagon, on the unit circle. Determine the homology of V(X, R) for all values of R. Also, determine the effect on homology of the inclusion $V(X, R) \hookrightarrow V(X, R')$ whenever $R \leq R'$.
- 4. Let X be any set, with a covering by subsets $U_i \subseteq X$, so $X = \bigcup_i U_i$, where $0 \le i \le n$. By the *nerve* of the covering $\mathcal{U} = \{U_i\}_i$, we will mean the abstract simplicial complex whose vertices are the integers $\{0, 1, \ldots, n\}$, and where $\{i_0, i_1, \ldots, i_x\}$ spans an s-simplex if and only if $U_{i_0} \cap \cdots \cap U_{i_s} \ne \emptyset$. Describe the nerve of the covering of the sphere S^2 by the intersection of all the octants in \mathbb{R}^3 with S^2 , and compute its homology.