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Topology

Invariance to Deformations



Topology

Log-log plot of a circle in the plane
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Compressed Representations of Geometry
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Measuring Shape
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Measuring the Shape of Data

Can we classify persistence vector spaces, up to isomorphism?



Measuring the Shape of Data - Barcodes

One dimensional barcode:
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Measuring the Shape of Data - Barcodes

1=2



Application to Natural Image Statistics

With V. de Silva, T. Ishkanov, A. Zomorodian



Natural Images

An image taken by black and white digital camera can be
viewed as a vector, with one coordinate for each pixel

Each pixel has a “gray scale” value, can be thought of as a real
number (in reality, takes one of 255 values)

Typical camera uses tens of thousands of pixels, so images lie in
a very high dimensional space, call it pixel space, P
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Natural Images

D. Mumford: What can be said about the set of images I ⊆ P
one obtains when one takes many images with a digital camera?
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One-dimensional barcode, suggests β1 = 1

Is the set clustered around a circle?



Primary Circle

5× 104 points, k = 300,T = 25

One-dimensional barcode, suggests β1 = 1

Is the set clustered around a circle?



Primary Circle

PRIMARY CIRCLE
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5× 104 points, k = 15,T = 25

One-dimensional barcode, suggests β1 = 5

What’s the explanation for this?
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Three Circle Model

Red and green circles do not touch, each touches black circle
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Three Circle Model

Does the data fit with this model?



Three Circle Model

SECONDARY CIRCLE



Three Circle Model

PRIMARY

SECONDARY SECONDARY



Database

k small

k large

T = 5% T = 25%



Three Circle Model

IS THERE A TWO DIMENSIONAL SURFACE IN
WHICH THIS PICTURE FITS?



Klein Bottle

4.5× 106 points, k = 100, T = 10

Betti 0 = 1

Betti 1 = 2

Betti 2 = 1

Betti 0 = 1

Betti 1 = 2

Betti 2 = 1



Klein Bottle

K - KLEIN BOTTLE



Klein Bottle

i 0 1 2
βi(K) 1 2 1

Agrees with the Betti numbers we found from data
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Identification Space Model



Klein Bottle

Do the three circles fit naturally inside K?



Klein Bottle

PRIMARY CIRCLE

P

PQ

Q



Klein Bottle

SECONDARY
    CIRCLES

R
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Natural Image Statistics

Klein bottle makes sense in quadratic polynomials in two
variables, as polynomials which can be written as

f = q(λ(x))

where

1. q is single variable quadratic

2. λ is a linear functional

3.
�
D f = 0

4.
�
D f

2 = 1



Kleinlet Compression

� This understanding of density can be applied to develop
compression schemes

� Earlier work, based on primary circle, called “Wedgelets”,
done by Baraniuk, Donoho, et al.

� Extension to Klein bottle dictionary of patches natural
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Texture Recognition

� Klein bottle has a natural geometry, and supports its own
Fourier Analysis

� Textures provide distributions on the Klein bottle

� Pdf’s can be given Fourier expansions, gives coordinates
for texture patches (Jose Perea)

� Gives methods comparable to state of the art in
performance, but in which effect of transformations such as
rotation is predictable
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Texture Recognition

Jose Perea - Duke University Klein Bottle and Texture Discrimination
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� Homology only detects homotopy equivalence

� Can we find persistent methods which capture more about
the point cloud?

� Methods from manifold topology can help
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on the data set as basis for filtering a Vietoris-Rips complex

� Requires that we fix the scale parameter

� The quantity on which we filter is usually a geometric
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Borel-Moore for Point Clouds

� Point clouds are finite, so doesn’t make direct sense

� Replace the ends with some kind of boundary for the space

� Define data depth function on a point cloud X as

∆(x) =
�

x �∈X
d(x , x �)

� Define the boundary ∂X as the set of local minima for ∆.

� Borel Moore is now the relative homology of (X , ∂X )

� Persistent version: use persistence based on −∆ instead of
scale parameter.



Borel-Moore for Point Clouds

Can now distinguish between “Y” and “X”, even though they
are homotopy equivalent



Borel-Moore: Shape of Tumors

Spiculated Lobulated



Sharpening Homology

� General principle: apply homology to (filtered) spaces
constructed from the given space using geometric
information



Applications of Persistence

� By using persistence on other quantities (density,
centrality, ...) can get useful shape invariants

� Persistence barcodes lie in barcode space, has a metric

� Persistence gives a map P from M (space of metric spaces
with Gromov-Hausdorff metric) to B (barcode space with
bottleneck distance)

� P is distance non-increasing (Chazal, Mémoli, Guibas,
Oudot)

� Can be used to get useful invariants of shapes - X-ray
images, for example

� Can one do machine learning on barcode space?
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Topological Mapping

Covering of Circle



Topological Mapping

Create nodes



Topological Mapping

Create edges



Topological Mapping

Nerve complex



Mapping

Now given point cloud data set X, and a covering U .

Build simplicial complex same way, but components replaced by
clusters.
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How to choose coverings?

Given a reference map (or filter) f : X → Z , where Z is a
metric space, and a covering U of Z , can consider the covering
{f −1

Uα}α∈A of X. Typical choices of Z - R, R2, S1.

The reference space typically has useful families of coverings
attached to it.
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� PCA or MDS coordinates

� User defined, data dependent filter functions
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Mapping

Cell Cycle Microarray Data

Joint with M. Nicolau, Nagarajan, G. Singh



Mapping

RNA hairpin folding data
Joint with G. Bowman, X. Huang, Y. Yao, J. Sun, L. Guibas, V.

Pande, J. Chem. Physics, 2009



Mapping

Diagram of gene expression profiles for breast cancer
M. Nicolau, A. Levine, and G. Carlsson, PNAS 2011



Mapping

Comparison with hierarchical clustering



Different platforms - importance of coordinate free approach
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Mapping

Serendipity - copy number variation reveals parent child
relations



Mapping

Discover what you don't know. Discover what you don't know. 

About the Data 

Example: DNA Sequencing  

Using Iris features designed for categorical data, Iris networks map populations from around the 
world (upper left) and  of three subpopulations in East Asia (lower right). Both networks show the 
distribution of Japanese samples within the network. 

DNA sequencing data includes 
hundreds of thousands of 
categorical features, where 
similarity, or distance, between 
samples is hard to define. However, 
this data provides the opportunity to 
relate genotypes with disease. 

 

1,092 samples 
250,000 columns 

Samples from  
around the world 

Samples from  
East Asia 



Mapping

Discover what you don't know. Discover what you don't know. 

About the Data 

Example: Model Verification 

Network of patients colored by the predicted survival (upper left, blue indicates good predicted survival) 
and actual survival (lower right, blue indicates good survival) – a group of patients was identified with 
good predicted survival but bad outcomes.  Further analysis showed that missing data was misleading 
the model used to make survival predictions. 

When patients come to an 
emergent care facility, doctors 
need to assess priority and predict 
probability of survival with medical 
intervention. 

Patient is quickly assessed for 
information about their condition: 
temperature, blood pressure, yes/
no questions. 

Predicted survival 

Actual survival 



Thank You!


