1. Let \(p \) be a prime. By the projective line \(\mathbb{P}^1(\mathbb{Z}_p) \) over \(\mathbb{Z}/p \) we will mean the set
\[
\mathbb{Z}_p \cup \{\infty\}
\]
where \(\infty \) is a formal symbol. It does not connote a notion of size or infinity on the set \(\mathbb{Z}_p \).

Let \(A \) denote the matrix
\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]
where \(a, b, c, \) and \(d \) denote members of \(\mathbb{Z}_p \), and \(ad - bc \neq 0 \). By the fractional linear transformation associated to \(A \) on \(\mathbb{P}^1(\mathbb{Z}_p) \), we will mean the transformation \(\hat{A} \) given by
\[
z \rightarrow \frac{az + b}{cz + d}
\]
where \(z \in \mathbb{P}^1(\mathbb{Z}_p) \). Here it is understood that if \(cz + d = 0 \), then the fraction is to be interpreted as \(= \infty \), and that if \(z = \infty \), the fraction is to be interpreted as \(\frac{a}{c} \).

(a) Suppose you are given two invertible \(2 \times 2 \) matrices \(A \) and \(B \) over \(\mathbb{Z}_p \). It follows that \(A \cdot B \) is also invertible. Give a simple description of \(\hat{A} \circ \hat{B} \) in terms of operations involving \(A \) and \(B \).

(b) Show that if \(I \) is the identity matrix, then \(\hat{I} \) is the identity on \(\mathbb{P}^1(\mathbb{Z}_p) \).

(c) Suppose that we have an alphabet with \(p + 1 \) elements, and we code the letters by a one to one assignment \(\pi \) from the letters to \(\mathbb{P}^1(\mathbb{Z}_p) \). For any message \(m \), we also write \(\pi(m) \) for the message obtained by replacing each letter \(\lambda \) by \(\pi(\lambda) \). Show that for any invertible matrix \(A \) over \(\mathbb{Z}_p \), there is an easy way to decrypt the message obtained by applying \(\hat{A} \) to \(\pi(m) \), and then applying \(\pi^{-1} \).

(d) For \(p = 31 \) in part (c), and a 32 letter alphabet, describe the decryption scheme for the encryption scheme associated to the transformation
\[
z \rightarrow \frac{2z + 5}{7z + 16}
\]

2. Suppose we construct a block cipher, with blocks of length 2, as follows. We will use an invertible \(2 \times 2 \) matrix \(A \) over \(\mathbb{Z}_{26} \) and a 2-vector \(v \), also over \(\mathbb{Z}_{26} \). Each block \(\beta \) of length two is encoded as a 2-vector over \(\mathbb{Z}_{26} \), and is then encrypted using the assignment
\[
\beta \rightarrow A\beta + v
\]

(a) Show that for \(A \) and \(v \) as above, it is possible to decrypt any message, and give an explicit description of the decryption algorithm.

(b) Does the above procedure work for \(A \) given by
\[
\begin{bmatrix}
7 & 5 \\
9 & 11
\end{bmatrix}
\]
and \(v \) given by
\[
\begin{pmatrix}
4 \\
9
\end{pmatrix}
\]

Why or why not? If it does, give the decryption formula.

(c) Does the above procedure work for \(A \) given by
\[
\begin{bmatrix}
1 & 2 \\
17 & 5
\end{bmatrix}
\]
and \(v \) given by
\[
\begin{pmatrix}
7 \\
2
\end{pmatrix}
\]

Why or why not? If it does, give the decryption formula.

3. How many solutions to the equation
\[x^2 = 50 \]
are there in \(\mathbb{Z}_{4891} \)? If there are any, enumerate them.

4. Construct addition and multiplication tables for a finite field with 9 elements. Find a primitive root, and give its order.

5. Show that if \(\text{gcd}(e, 24) = 1 \), then \(e^2 \equiv 1 \pmod{24} \). Show that if you use 35 as your RSA modulus, then the decryption and encryption exponents are always the same.