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We’ll start by discussing Milnor’s construction of what is now called Milnor K-theory, done in the
1970 paper [12].

Let F be a field, with unit group F×. Consider the free associative algebra on F×, i.e. the tensor
algebra: T (F×) =

⊕∞
n=0

(
F×
)⊗Zn. We define the Milnor K-theory (which from now on, we will

just refer to as “K-theory”) of F :

Definition 1.1. For a field F , the Milnor K-theory of F is:

KM
∗ (F ) = T (F×)/〈a⊗ b | a, b ∈ F×, a+ b = 1〉

Since we quotient T (F×) by a homogeneous ideal, KM
∗ (F ) is naturally a graded associative algebra,

with graded pieces denoted KM
n (F ). The relation a · b = 0 for a + b = 1 is called the Steinberg

relation.

There is a canonical isomorphism ` : F× → KM
1 (F ) 1 sending a ∈ F to the class of a ∈

T1(F ) = F . This satisfies:

• `(1) = 0

• `(ab) = `(a) + `(b).

• `(a) · `(b) = 0 whenever a+ b = 1.

Lemma 1.2. If a+ b ∈ {0, 1}, `(a) · `(b) = 0 ∈ KM
2 (F ).

Proof. If a+ b = 1, this is one of the properties of ` mentioned above. If a+ b = 0, then if a = 1,
`(a) = 0, so `(a) · `(b) = 0. If a 6= 1, then in F× we have:

1− a
1− a−1

= −a · a− 1

a− 1
= −a

Thus, `(−a) = `
(

1−a
1−a−1

)
= `(1− a)− `(1− a−1), so:

`(a) · `(−a) = `(a) · `(1− a) + `(a) · `(1− a−1)

= `(a) · `(1− a−1)

= −`(a−1) · `(1− a−1)

= 0

1called ` for “logarithm”
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We can proceed similarly to prove:

Lemma 1.3. If a1 + · · ·+ an ∈ {0, 1}, then `(a1) · · · · · `(an) = 0 ∈ KM
n (F ).

The multiplication on KM
∗ (F ) is graded commutative:

Lemma 1.4. `(a)`(b) = −`(b)`(a) for all a, b ∈ F×

Proof.

`(a)`(b) + `(b)`(a) = `(a)
(
`(−a) + `(b)

)
+ `(b)

(
`(a) + `(−b)

)
= `(a)`(−ab) + `(b)`(−ab)
=
(
`(a) + `(b)

)
`(−ab)

= `(ab)`(−ab)
= 0

By graded commutativity, `(a) · `(a) = −`(a) · `(a), so `(a) · `(a) is 2-torsion. We can ask if it
is actually 0, i.e. if multiplication is alternating. It turns out that we have:

Lemma 1.5. `(a) · `(a) = `(−1) · `(a)

Proof. `(a) · `(a) = `(a)
(
`(−1) + `(−a)

)
= `(−1) · `(a)

Example 1.6. We have a non-trivial ring homomorphism KM
∗ (R)→ F2 sending `(a) to 0 if a > 0

and 1 if a < 0. This sends `(−1)n to 1n = 1, so we get `(a) ·`(a) = `(a) and thus the multiplication
is not alternating.

Now, we want to indicate why Milnor K-theory is a useful invariant of the field F . We recall the
state of algebraicK-theory in 1970. IfA is a ring, there were definitions available forK0(A), K1(A),
K2(A), and K3(A):

For each n, we may define groups Stn(A) called the n-th Steinberg group of A. This has
generators xij(λ) for 1 ≤ i 6= j ≤ n, λ ∈ A, and relations xij(λ)xij(µ) = xij(λ+ µ) and

[xij(λ), xkl(µ)] =

{
xil(λµ) j = k

1 j 6= k

There is a homomorphism from Stn(A) to GLn(A) sending xij(λ) to the elementary matrix

eij(λ) =


1 λ

. . .

1


with the λ in position i, j.

Then, we may define:

Definition 1.7. The Steinberg group of K is St(A) = lim−→n
Stn(A).
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The maps Stn(A) → GLn(A) patch together to a map Φ: St(A) → GL(A) := lim−→n
GLn(A).

Then we define:

Definition 1.8. • K1(A) = GL(A)/Φ(St(A)) When A is a field2, there is an isomorphism
K1(A) = GL(A)/Φ(St(A))

∼−→ A× given by the determinant. In particular, K1(F ) '
KM

1 (F ) for a field F .

• K2(A) = ker(Φ).

• K3(A) = H3(St(A)).

In 1973, Quillen extended this by defining (Quillen) algebraic K-theory KQ
∗ (A) = π∗(K(A))

(i.e. homotopy groups) for a particular topological space K(A). This agrees with the definitions in
terms of the Steinberg group for degrees 0 to 3.

Now, assume that A = F is a field. For λ, µ ∈ F×, pick elements Dµ, Dλ ∈ St3(F ) map-

ping to
(
µ

1
µ−1

)
,
(
λ
λ−1

1

)
in GL3(F ). Then [Dλ, Dµ] ∈ ker(Φ). We denote by {λ, µ} the

corresponding class in K2(F ).
We have:

Lemma 1.9. {λ, µ} = 0 if λ+ µ = 1

This is the motivating appearance of the Steinberg relation, and gives a well-defined map
KM

2 (F ) → K2(F ) sending `(a)`(b) to {a, b}. Milnor’s definition, which came before Quillen’s
definition of higher algebraic K-theory, was motivated by the following theorem:

Theorem 1.10 (Matsumoto). This is an isomorphism from KM
2 (F ) to K2(F ).

Another place where the Steinberg relation appears is in the study of Kähler differentials. Recall
that for a field F , we have the F -vector space Ω1

F/Z of Kähler differentials of F . This is defined by:

Ω1
F/Z =

⊕
a∈F

F · da/
(
d(a+ b) = da+ db, d(ab) = adb+ bda, d(1) = 0

)
From this, we obtain the algebraic de Rham complex Ω∗F/Z =

∧∗
F Ω1

F/Z. This is an alternating
graded ring.

There is a map dlog : KM
1 (F ) ' F ∗ → Ω1

F/Z given by a 7→ a−1 da. If a+ b = 1 for a, b ∈ F ∗,
we have da+ db = 0 ∈ Ω1

F/Z, so:

da

a
∧ db
b

= a−1b−1(da) ∧ (−da) = 0

Thus, dlog(a)∧ dlog(b) = 0 for a+ b = 1, and so we get a (unique) map of rings KM
∗ (F )→ Ω∗F/Z

sending `(a) to dlog(a).
When F = Q(x1, . . . , xn) is a purely transcendental extension of Q of transcendence degree n,

then Ω1
F/Z has basis dx1, . . . , dxn. This implies that Ωk

F/Z has basis {dxi1 ∧ · · · ∧ dxik | 1 ≤ i1 <

2this holds for certain other types of rings as well, but is a harder result
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i2 < · · · < ik ≤ n}. This makes sense when we think of F as the field of meromorphic functions
on An

Z = Spec
(
Z[x1, . . . , xn]

)
.

Another fact3 is that if Q ↪−→ F is a finite extension, then KM
i (F ) '

⊕
F ↪−→R Z/2 for i ≥ 3.

These facts indicate that the study of the higher KM
i (F ) is interesting mostly for function fields of

varieties of sufficiently large dimension relative to i.

2 January 10
Last time, we defined Milnor K-theory of a field F :

KM
∗ (F ) = Z〈`(a)) | a ∈ F×〉/(`(a) + `(b) | a+ b = 1)

We saw the defining Steinberg relation appear in de Rham cohomology and in algebraic K-
theory, and today we will discuss another manifestation of this relation: quadratic forms. Appearing
in the title of Milnor’s paper, these are important in Milnor’s original conception of MilnorK-theory.

Definition 2.1. Let F be a field of characteristic different from 2. We define a quadratic form (M, q)
over F to be an F -vector space M together with a function q : M → F which is a homogeneous
polynomial of degree two with respect to a basis of M .

Given a quadratic form (M, q), we may define a function

b(x, y) = q(x+ y)− q(x)− q(y)

this function is bilinear and symmetric, and we may recover q by the relation q(x) = b(x, x)/2.
Thus, there is a one-to-one correspondence between quadratic forms and symmetric bilinear forms.4

Now, assume that the map b : : M → M∨ = HomF (M,F ) sending x to b(x, ·) is an isomor-
phism. In this case, we say that (M, q) is non-degenerate. With respect to a basis, we may write
b(x, y) = xt A y for a matrix A, and non-degeneracy says exactly that det(A) 6= 0.

Two quadratic forms (M, q), (M ′, q′) are equivalent if there exists an F -linear isomorphism
from M to M ′ which pulls back q′ to q. In terms of matrices, this equivalence relation replaces the
matrix A with Bt A B for some B ∈ GLn(F ).

In dimension n = 1, we may write a quadratic form as 〈a〉 = (F, q(x) = ax2) for a ∈ F×.
Then 〈a〉 ' 〈b〉 iff a/b ∈ (F×)2.

There are binary operations on the set of non-degenerate quadratic forms defined by

(M, q)⊕ (M ′, q′) = (M ⊕M ′, q + q′)

where (q + q′)(m,m′) = q(m) + q′(m′) and

(M, q)⊗ (M ′, q′) = (M ⊗M ′, qq′)

Now, using these operations, we may show that the set of equivalence classes of non-degenerate
quadratic forms (M, q) over F is a ring without subtraction. We define:

3Bass, Tate: The Milnor ring of a global field
4This is not true when 2 is not invertible!
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Definition 2.2. The Grothendieck-Witt ring of F , denoted GW(F ), is the ring obtained by formally
adjoining additive inverses to the set of non-degenerate quadratic forms over F with these operations.

We have the following easy proposition:

Proposition 2.3. Any (M, q) with dimM = n may be diagonalized as:

(M, q) ' 〈a1〉 ⊕ · · · ⊕ 〈an〉

for some ai ∈ F .

This leads to the question of when 〈a1〉 ⊕ 〈a2〉 ' 〈a′′1〉 ⊕ 〈a′2〉.
First, consider 〈1〉+ 〈−1〉 ∈ GW(F ), i.e. the (class of the) quadratic form defined by q(x, y) =

x2 − y2. Since x2 − y2 = (x+ y)(x− y), we may make an invertible change of variables to turn
this into the form q′(x, y) = xy. This form is called the hyperbolic plane.

Now, we obtain the following diagram:

GW(F )

dim
��

Z

〈1〉+〈−1〉
;;

2 // Z

The image of the diagonal map is an ideal, since 〈a〉
(
〈1〉+ 〈−1〉

)
= 〈a〉 + 〈−a〉. This is the

class of the form (x, y) 7→ ax2 − ay2 = (a(x+ y))(x− y), so by making the change of variables
x′ = a(x+ y), y′ = x− y, we see that this is isomorphic to the hyperbolic plane.

This allows us to define:

Definition 2.4. The Witt ring of F , denoted W(F ), is the ring GW(F )/Z
(
〈1〉+ 〈−1〉

)
.

By considering the dimension maps, we obtain a commutative diagram:

Î ' //

��

I

��

GW(F ) //

dim
��

W(F )

dim (mod 2)

��

Z // Z/2

Here, the vertical rows are exact, i.e. I, Î are the respective kernels of the dimension maps. We note
that I ∩ Z

(
〈1〉+ 〈−1〉

)
= 0.

Now, what does all this have to do with Milnor K-theory? We have a map KM
1 (F ) = F× −� I

given by a 7→ 〈a〉 − 〈1〉. Then a2 7→ 〈a2〉 − 〈1〉 = 0, since 〈a2〉 ' 〈1〉. Since `(a2) = 2`(a), we
think of this as a map s : KM

1 (F )/2 −� I .
Note that:

s(ab)− s(a)− s(b) = 〈ab〉 − 〈a〉 − 〈b〉+ 〈1〉
=
(
〈a〉 − 〈1〉

) (
〈b〉 − 〈1〉

)
∈ I2

This gives a corollary:
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Corollary 2.5. The map s : KM
1 (F )/2 −� I/I2 sending `(a) to

(
〈a〉 − 〈1〉

)
is a homomorphism.

We may tensor this map with itself to get a map F× ⊗ F× → I/I2 ⊗ I/I2, and compose this
with the multiplication map I/I2 ⊗ I/I2 → I2/I3. This sends a⊗ b to

(
〈a〉 − 〈1〉)

) (
〈b〉 − 〈1〉

)
.

Proposition 2.6. If a+ b = 1, a⊗ b maps to 0 under this map.

Proof. We may write 〈ab〉+ 〈1〉 as:(
ab

1

)
=

(
a(1− a)

1

)

=

(
a− a2

1

)

∼

(
a a
a 1

)

∼

(
a 0
0 b

)

Thus, we obtain a map s2 from KM
2 (F ) = F× ⊗ F×/(a ⊗ b | a + b) = 1 to I2/I3. By the

universal property of the construction of Milnor K-theory, we obtain a unique ring map:

s : KM
∗ (F )/2 −�

∞⊕
n=0

In/In+1 = grI(W(F ))

sending `(a) to
(
〈a〉 − 〈1〉

)
∈ I/I2. A natural question which appears at this point is:

Question 1. Is
⋂∞
n=0 I

n = 0?

This question was settled affirmatively by Arason and Pfister in 1971 [2]. Another fundamental
question attached to this story turned out to be much harder:

Theorem 2.7 (Milnor Conjecture on quadratic forms). The map s defines an isomorphism from
KM
∗ (F )/2 to grI(W(F )).

This was proved by Orlov-Vishik-Voevodsky in [10]. Much earlier, Milnor proved that the maps
s1 : KM

1 (F )/2 −� I/I2 and s2 : KM
2 (F )/2→ I2/I3 are injective. He constructs a splitting using

“Stiefel-Whitney classes”: we may think of quadratic forms over F as some sort of vector bundle5

over SpecF , and KM
∗ (F ) as some sort of cohomology theory for SpecF , so we might expect there

to be a “characteristic class” construction connecting them.
We have a map w1 : GW(F ) → F×/(F×)2 = KM

1 (F )/2 sending 〈a〉 to the class of `(a) in
dimension 1. More generally, if A is a matrix representing a quadratic form, the class of A maps

5or perhaps “vector bundle with inner product”
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to the class of `(det(A)). This gives a well-defined map on GW(F ) because the determinant of
Bt A B differs from the determinant of A by det(B)2, so they have the same class in KM

1 (F )/2.
We want to extend this to a “total Stiefel-Whitney class”:

w = 1 + w1 + · · · : GW(F )→

(
∞∏
n=0

KM
n (F )/2

)×
sending 〈a〉 to 1 +w1(〈a〉) = 1 + `(a). If 〈a〉 ' 〈b〉, then a/b is a square, so the classes of `(a) and
`(b) are the same in the codomain.

In order to show this map is really well-defined, it suffices6 to show that if 〈a1〉 + 〈a2〉 '
〈b1〉+ 〈b2〉 implies that (

1 + `(a1)
) (

1 + `(a2)
)

=
(
1 + `(b1)

) (
1 + `(b2)

)
(1)

in KM
∗ (F ). We already proved w1 is well defined, so it remains to consider the component in

KM
2 (F ).

In other words, we assume that a1x
2 + a2y

2 ∼ b1x
2 + b2y

2. Since a1 = a1(1)2 + a2(0)2, it is in
the image of this quadratic form. Thus (since equivalent forms have the same image), we may write
a1 = b1x

2 + b2y
2 for some x, y ∈ F . Then 1 = b1x2

a1
+ b2y2

a1
. The case xy = 0 is easy, so we assume

xy ∈ F× and thus, by the Steinberg relation, we have

0 = `

(
b1x

2

a1

)
· `

(
b2y

2

a1

)
InKM

2 (F )/2 this is (`(b1)−`(a1))(`(b2)−`(a1)), so `(b1)`(b2) = `(a1)(`(b1)+`(b2)−`(a1)). We
already showed w1 is well defined, so `(a1) + `(a2) = `(b1) + `(b2) ∈ KM

1 (F )/2, so we conclude
`(a1)`(a2) = `(b1)`(b2), finishing the proof of (1).

Finally, one may check that w1, w2 are left inverse to s1, s2, which shows Milnor’s theorem that
s1, s2 are injective.

3 1/12/18
Last time, we discussed the map from KM

∗ (F )/2 to grI(W(F )) = ⊕In/In+1. That this is an
isomorphism is the content of Milnor’s conjecture on quadratic forms, proved by Orlov-Vishik-
Voevodsky. Today, we will discuss another map from KM

∗ /2, this time with target H∗(GF ;Z/2),
i.e. the Galois cohomology of the trivial Galois module Z/2. Here, GF is the absolute Galois group
of F , i.e. the profinite group given by the inverse limit of Gal(L/F ) as L ranges over finite Galois
field extensions.

We recall Hilbert’s Theorem 90. Let F ↪−→ L be a cyclic Galois field extension of degree
n, i.e. a Galois field extension such that Gal(L/F ) ' 〈σ〉 ' Z/nZ. There is a multiplicative
norm map NL/K : L→ K defined by a 7→ detK(L

·a−→ L) =
∏n−1

i=0 σ
i(a). We think of L×, K× as

Gal(L/K)-modules and write them additively, so NL/K = 1 + σ+ · · ·+ σn−1. We have a complex:

L×
σ−1

// L×
NL/K

// K×

6see the reference in [12, Lemma 3.1]
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The map on the left sends b ∈ L× to σ(b)/b.
We have:

Theorem 3.1 (Hilbert’s Theorem 90). The above complex is exact in the middle, i.e. the kernel of
NL/K is equal to the image of σ − 1.

This complex is reminiscent of the resolution used to calculate group cohomology for the cyclic
group Gal(L/K), i.e. the complex:

L×
σ−1

// L×
1+σ+···+σn−1

// L×
σ−1

// L× // · · ·

This shows us that Hilbert’s Theorem 90 is equivalent to the following statement, which is true
for any finite Galois field extensions:

Theorem 3.2 (Hilbert’s Theorem 90, version 2). For any finite Galois field extension L/F ,
H1(Gal(L/F ), L×) = 0.

We can patch together the Galois cohomology of the finite extensions of F to get absolute
Galois cohomology of F : Pick a separable closure F ↪−→ Fs and take colimits over all finite Galois
sub-extensions F ↪−→ L ⊆ Fs.

We have:

Definition 3.3. Hn(GF ;F×s ) := lim−→L
Hn(Gal(L/F );L×)

We may also define Galois cohomology intrinsically, without passing to finite sub-extensions,
in the category of discrete GF -modules by using continuous cochains. We get another version of
Hilbert’s theorem 90:

Theorem 3.4 (Hilbert’s Theorem 90, version 3). H1(GF ;F×s ) = 0

Assume that char(F ) 6= 2. We have an action of GF on F×s , leading to the short exact Kummer
sequence of GF -modules:

1 // µ2(F×s ) = {±1} // F×s
x 7→x2

// F×s // 1

There is a similar sequence with µn and n-th powers when char(F ) - n.
This gives a long exact sequence:

· · · // H0(GF ;F×s ) // H0(GF ;F×s ) s // H1(GF ;Z/2) // H1(GF ;F×s ) = 0

We may rewrite this as:

F× x 7→x2
// F× // H1(GF ;Z/2) // 0

Thus, we have an isomorphism s : KM
1 (F )/2 = F×/(F×)2 ∼−→ H1(GF ;Z/2). Now, there

are cup products in Galois cohomology, giving a map ^ : H1(GF ;Z/2) ⊗ H1(GF ;Z/2) →
H2(GF ;Z/2). This gives us another manifestation of the Steinberg relation:
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Proposition 3.5 (Bass-Tate). If a, b ∈ F× satisfy a+b = 1, then δ(a) ^ δ(b) = 0 ∈ H2(GF ;Z/2).

This gives the immediate corollary.

Corollary 3.6. The Kummer map s determines a well-defined map of rings s : KM
∗ (F )/2 →

H∗(GF ;Z/2).

Now, we prove the proposition:

Proof. Assume that a, b 6∈ (F×)2, b = 1 − a. Pick α ∈ Fs with α2 = a. Let E = F [α] '
F [X]/(X2−α) be the field extension generated by α. This gives an embedding map π : GE ↪−→ GF

realizing GE as an index-two subgroup of GF .
This determines a commutative diagram, with π∗ the restriction map and π∗ the co-restriction or

transfer map.

E× δ //

NE/F

��

H1(GE;Z/2)

π∗
��

F×

OO

δ // H1(GF ;Z/2)

π∗

OO

We can think of this transfer map topologically. Let f : X → Y be a finite covering space.
Then there is a map f∗ : H∗(X;Z/2)→ H∗(Y ;Z/2) (more generally, this works for any constant
coefficient module or sheaves when there is a map of sheaves compatible with f ), defined at the
level of cochains by summing over lifts of chains in Y to chains in X .

This gives the transfer map in group cohomology because (for M a constant coefficient group)
H∗(G;M) = H∗(BG;M), and when H ⊆ G is a finite-index subgroup, we obtain a finite covering
map BH = EG/H → BG = EG/G.7

Note that the transfer map is not multiplicative, but it is a homomorphism of modules over
the ring H∗(GF ;Z/2), which acts on H∗(GE;Z/2) via π∗. Topologically, we see this because
π∗(x ^ π∗(y)) = π∗(x) ^ y.

Now, we may compute that NE/F (α) = α(−α) = −a, NE/F (1 − α) = (1 − α)(1 + α) =
1− α2 = 1− a. Then, the commutative diagram gives us:

δF (a) ^ δF (1− a) = δF (a) ^ δF (NE/F (1− α))

= δF (a) ^ π∗
(
δE(1− α)

)
= π∗

(
π∗(δF (a)) ^ δE(1− α)

)
= π∗

(
δE(a) ^ δE(1− α)

)
= π∗

(
δE(α2) ^ δE(1− α)

)
= 0

7Note that for the purposes of group cohomology, EH is any contractible space with a free action of H; by restriction
the G-action on EG to H , we may identify EG with EH as topological spaces.
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This construction works more generally, proceeding via the degree n Kummer sequence:

1 // µn(F×s ) // F×s // F×s // 1

This gives a map KM
1 (F )/n

∼−→ H1(GF ;µ(n)). By an analogous result to the one above, this
extends to a map of rings:

KM
∗ (F )/n→

⊕
i

H i(GF ;µ
⊗Z/ni
n )

See [16] for details.
This leads to:

Conjecture 1 (Milnor Conjecture). The map KM
∗ (F )/2)→ H∗(GF ;Z/2) is an isomorphism.

We have the incredible result:

Theorem 3.7 (“Norm Residue Theorem”: Voevodsky, Root). For any field F with char(F ) - n, the
map KM

∗ (F )/n→
⊕

iH
i(GF ;µ

⊗Z/ni
n ) is an isomorphism.

Prior to its proof, this was known as the Bloch-Kato conjecture (not to be confused with the
Bloch-Kato conjecture on special values of L-functions, which is wide open).

Already in degree 2, this is a hard result:

Theorem 3.8 (Merkurjev). KM
2 (F )/2→ H2(GF ;Z/2) is an isomorphism.

Theorem 3.9 (Merkurjev-Souslin). KM
2 (F )/n→ H2(GF ;µ⊗2

n ) is an isomorphism.

One reason to care about the result in degree 2 is thatH2(GF ;Z/2) is isomorphic to the 2-torsion
part of the Brauer group of F , denoted 2Br(F ).

This group is constructed from the set of isomorphism classes of central simple F -algebras A,
i.e. associative F -algebras with center F such that A⊗F E ' Mn(E) (the n-dimensional matrix
algebra over E) for some n and some finite extension E/F . We mod out this set by the equivalence
relation A ∼Mn(A). This has a group structure with multiplication given by tensor product over
F and unit element given by the trivial central simple F -algebra F . The inverse of A is Aop, the
opposite algebra of A (i.e. it has the same underlying F -vector space as A, but with multiplication
given by a ·Aop b = b ·A a). Thus, the two-torsion elements are exactly the central simple algebras A
with A ' Aop.

By composing the Kummer map KM
2 (F )/2→ H2(GF ;Z/2) and the isomorphism of the latter

group with 2Br(F ), we may verify that `(a)`(b) maps to the class of the central simple algebra
F 〈x, y〉/(x2 − a, y2 − b, xy + yx). The surjectivity part of Merkurjev’s theorem implies that these
so-called “quaternion algebras” generate the 2-torsion of the Brauer group.

3.1 Cheat sheet by SG on group cohomology
3.1.1 As a special case of Ext

If G is a (discrete) group, and M is a module over the group ring Z[G], then group cohomology
may be defined as H i(G;M) = ExtiZ[G](Z,M).

10



3.1.2 Via singular homology

For any groupG there exists a connected CW complexBGwith basepoint ∗ ∈ BG, an isomorphism
φ : π1(BG, ∗) ∼= G, such that the universal cover of BG is contractible. The triple (BG, ∗, φ) is
unique up to homotopy equivalence in a suitable sense (and the homotopy equivalence is unique up
to homotopy). If we pick such a triple for G, we get one for any subgroup. Indeed, if EG→ BG
denotes the universal cover then G acts on EG by deck transformations and if H < G is a subgroup,
then the quotient map EG→ EG/H is a covering space. Hence we may take BH = EG/H . In
this model, BH → BG is a covering space; it is a finite covering space if |G : H| <∞.

Then we may define H i(G;Z) = H i(BG), so group cohomology is a special case of singular
cohomology. IfM has non-trivial action, group cohomology becomes a special case of “cohomology
with local coefficients” (see e.g. Hatcher’s book).

3.1.3 Via an explicit cochain complex

Finally, one may define Cn(G;M) as the set of all functions f : G × · · · × G → M , where the
product has n factors. There is a coboundary map δ : Cn−1(G;M)→ Cn(G;M) given by

(δf)(g1, . . . , gn) = g1.f(g2, . . . , gn)+
n−1∑
i=1

(−1)nf(g1, . . . , gigi+1, . . . , gn)+(−1)nf(g1, . . . , gn−1),

where the first term involves the action of g1 on f(g2, . . . , gn) ∈M .
n = 1 is particularly interesting: f : G→ M is a cocycle if and only if it satisfies f(g1g2) =

g1.f(g2) + f(g1). If the action of G on M is trivial, this says precisely that f is a homomorphism
and in this case H1(G;M) is just Hom(G,M).

3.1.4 Transfer

For any group homomorphism φ : H → G there is an induced f ∗ : H∗(G;M) → H∗(H;M),
whereH acts onM via φ. IfH ⊂ G has finite index, there is a “transfer” (also called “corestriction”)
map f∗ : H∗(G;M)→ H∗(H;M) in the other direction. The most important properties to know
about this construction is that it is a homomorphism ofH∗(G;M)-modules, and that the composition
f∗ ◦ f ∗ is multiplication by the index of H in G.

I find the topological description (lifting simplices in a model for BH → BG which is a finite
covering space) the most intuitive, but the transfer can of course be described in any of the three
equivalent models of group cohomology given above. For example, in the explicit cochain complex,
one chooses a set-theoretic section s : G/H → G of the quotient map (i.e. picks a representative of
each coset), defines φ∗ : C∗(H;M)→ C∗(G;M) by

(φ∗f)(g1, . . . , gn) =
∑

x∈G/H

(sx)−1.f((sx)g1(s(xg1))−1, · · · (sx)gn(s(xgn))−1),

and checks that this is a map of cochain complexes and has the desired properties.

11



3.1.5 Profinite topological groups

For certain kinds of topological groups G, there is a way to take the topology into account when
defining group cohomology. If you’re familiar with cohomology of discrete groups and pretend that
we just take cohomology of the underlying discrete group, your intuition might not be too far off.
(If on the other hand you are familiar with taking “classifying spaces” of topological groups, then
you should know that this is not the correct thing to do here.)

For much more on this, see e.g. Serre’s Galois cohomology. For even more, see Neukirch–
Schmidt–Wingberg: Cohomology of number fields.

If G is a topological group we may consider open normal subgroups H ⊂ G of finite index.
For such H the quotient group G/H is a finite group and the quotient topology is the discrete one.
There is a canonical continuous homomorphism G→ G/H , and hence a continuous map

G→ lim←−
H

G/H,

where the inverse limit runs over open normal subgroups of finite index. This inverse limit inherits
a topology from the product of the discrete G/H , and the resulting topological group is called the
profinite completion of G. The topological group G is called profinite if the canonical continuous
homomorphism from G is a homeomorphism.

IfM is an abelian group with an actionG×M →M which is continuous in the discrete topology
of M , then we can define the continuous cochain complex C∗cont(G;M) using only continuous
functions. One can show that the cohomology of this cochain complex is canonically isomorphic to
the direct limit

lim−→
H

H∗(G/H;MH),

where H runs through open normal subgroups of G and MH ⊂ M is the subgroup fixed by H .
Either can be taken as the definition of (continuous) cohomology of the profinite group G with
coefficients in M . The colimit description is useful if you are already familiar with cohomology
of discrete groups and want to transfer some of your knowledge into continuous cohomology of
profinite groups.

4 1/17/18
The goal for the next few lectures will be to develop motivic cohomology. This was conjectured to
exist in the 1980’s by Lichtenbaum ([8]) and Beilinson ([3]). Their idea is to associate cohomology
groups Hp,q(X) to a scheme X satisfying certain properties, such as the Euler characteristic being
related to special values of ζ-functions. Voevodsky’s motivation came more from the Atiyah-
Hirzebruch spectral sequence, which relates topological K-theory to singular cohomology: motivic
cohomology is supposed to have a similar relationship with Quillen’s algebraic K-theory.

We will briefly discuss (complex) topological K-theory. Let X be a finite CW complex; to X
we may associate the group K0(X), defined as the Grothendieck group of the category of (complex)
vector bundles on X . It turns out that this functor is representable: K0(X) ' [X,Z × BU ] =

π0

(
Maps(X,Z× BU)

)
. Here BU = lim−→

U(2n)
U(n)×U(n)

.
These groups are extended to negative degrees by defining K−n(X) = K0(SnX), and the

resulting groups are also representable. If we write ku0 = Z×BU , we haveK−n(X) = [X,Ωnku0],
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where Ωn is the n-th fold loop space. The space Z× BU admits deloopings, i.e. ku0 ' Ωku1 '
Ω2ku2, and so on. The kui form a spectrum. Thus, we have homotopy equivalences:

Maps(X, ku0) ' ΩMaps(X, ku1) ' Ω2Maps(X, ku2)

We have K−n(X) = πnMaps(X, ku0) = πn+kMaps(X, kuk) for any k. Thus, we may define
K∗(X) in positive degree as well by defining Kn(X) = πk−nMaps(X, kuk) for sufficiently large
k.

The Atiyah-Hirzebruch spectral sequence comes from the Postnikov tower of ku0 = Z× BU .
This gives a diagram:

...

��

τ≤2(ku0)

��

τ≤1(ku0)

��

ku0
//

::

CC

τ≤0(ku0)

Here, τ≤n(ku0) has πk = 0 for all k > n, and the vertical maps are homotopy fibrations. The
homotopy fiber is an Eilenberg-Mac Lane space K(πn(ku0), n). These Eilenberg-Mac Lane spaces
have the property that they represent cohomology: [X,K(A, n)] ' Hn(X;A) for any abelian group
A.

The Postnikov tower gives a tower of maps from X:

...

��

Maps(X, τ≤2(ku0))

��

Maps(X, τ≤1(ku0))

��

Maps(X, ku0) //

55

;;

Maps(X, τ≤0(ku0))

The homotopy fibers are Maps(X,K(πn(ku0), n)). This tower gives a spectral sequence for
homotopy groups (with bi-degrees labeled as in the cohomological Serre spectral sequence):

Hp(X, π−q(ku0)) =⇒ π−p−qMaps(X, ku0) = Kp+q(X)

This is a “fourth quadrant” cohomological spectral sequence: i.e. it’s supported when p > 0, q < 0
with differentials increasing p and decreasing q.

Now, we know the homotopy groups of ku0 = Z× BU , as a result of the following theorem:

13



Theorem 4.1 (Bott Periodicity).

π∗(Z× BU) =

{
Z ∗ ≥ 0 even
0 else

Thus, the Atiyah-Hirzebruch spectral sequence takes the form

Ep,q
2 =

{
Hp(X;Z) for q ≤ 0 even
0 otherwise

=⇒ Kp+q(X).

The first possible differentials are d3 : Ep,−2j
3 → Ep+3,−2j−2

2 . It turns out that they can be identified
with the composition

Hp(X;Z)→ Hp(X;Z/2)
Sq2

−−→ Hp+2(X;Z/2)
β−→ Hp+3(X;Z),

where Sq2 denotes the “Steenrod square” cohomology operation (cf. e.g. Section 4.L in Hatcher’s
textbook, or similar accounts in other textbooks), and β denotes the “Bockstein homomorphism” (i.e.
the connecting homomorphism in the long exact sequence associated to 0→ Z→ Z→ Z/2→ 0).
In particular the d3 differential satisfies 2d3 = 0, and the higher differentials can also be shown to
be torsion. As an aside, the whole spectral sequence may be equipped with “Adams operations”
converging to the usual Adams operations ψk : K∗(X)→ K∗(X), in which ψk acts as kj on the
row E∗,−2j

r .
In Quillen K-theory, we associate to a scheme X a topological space K(X) with KQ

i (X) :=
πi(K(X)). As before, this space admits arbitrarily many de-loopings. There’s supposed to be a
so-called “motivic spectral sequence” whose E2-page is given by a cohomology groups which we
can denote (in a grading convention which makes it look analogous to the AHSS, but may not be
the usual grading of the motivic spectral sequence)

Ep,q
2 =

{
Hp(X;Z

(
− q

2

)
) for q ≤ 0 even

0 otherwise,

=⇒ π−p−q(K(X)),

where Hp
(
X;Z

(
− q

2

))
is for now just notation for a functor indexed by two integers (p,−q/2) that

we haven’t defined yet. (In the actual definition Z
(
− q

2

)
will be a cochain complex of sheaves of

abelian groups.)
Beilinson and Lichtenbaum were able to predict some properties which these groups should

have, at least when X is smooth over a field:

• H∗(X;Z(0)) should be (Zariski) sheaf cohomology with coefficients in Z. (This is 0 in
higher degrees when X is smooth.)

• Hp(X;Z(1)) should be Hp−1(X; O×X), again in Zariski sheaf cohomology.

• H2q(X;Z(q)) should be the Chow groups CHq(X) which measure algebraic cycles of di-
mension q up to rational equivalence.8

8Note that this means that the Chow groups of X should, after accounting for some differentials, give a filtration of
K0(X). Indeed, the construction of Chern characters gives an isomorphism from K0(X)⊗Z Q to

⊕
q CHq(X)⊗Z Q.
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In the case X = SpecF , the above properties tell us that we should have H1(SpecF ;Z(1)) =
H0(SpecF ;F×) = F× = KM

1 (F ). We should also have H0(SpecF ;Z(0)) = Z = KM
0 (F ).

More generally, we should have Hp(SpecF ;Z(p)) = KM
p (F ). Thus, this spectral sequence should

give a relationship between Milnor and Quillen K-theory for F . Because Quillen K-theory satisfies
the Steinberg relation and agrees with Milnor K-theory in degrees up to 2, there is a canonical map
of graded rings KM

∗ (F )→ KQ
∗ (F ), and we hope for this to be an edge map in the motivic spectral

sequence.
Beilinson also proposed how to find these motivic cohomology groups. H∗(X;Z(0)) and

H∗(X;Z(1)) are both sheaf cohomology for the Zariski topology. The former is just sheaf cohomol-
ogy of the constant sheaf Z. The latter is, up to a degree shift by 1, sheaf cohomology of the sheaf
Gm = O×X . Thus, H∗(X;Z(1)) is cohomology with coefficients in the object Gm[−1]. Beilinson’s
proposal, which Voevodsky accomplished, is to realize the Z(q) as chain complexes of sheaves.

How do we associate cohomology groups to complexes of sheaves? If we are given a cochain
complex F • of sheaves of abelian groups, we may pick injective resolutions F p ↪−→ I •,p in such
a way that we get the following diagram:

F 0 //

��

F 1 //

��

· · ·

I 0,0 //

��

I 0,1 //

��

· · ·

I 1,0 //

��

I 1,1 //

��

· · ·

...
...

Taking global sections gives us a bi-complex, and we can define hypercohomology H∗(X; F •) =
H∗(Tot(I∗,∗)), i.e. the cohomology groups of the total complex associated to this double complex.
This is the complex with groups Tot(I∗,∗)n =

⊕
p+q=n I

p,q with differential given (up to sign) on
each Ip,q as the sum of the horizontal and vertical differentials.9

5 1/19/2018
In order to construct motivic cohomology, we introduce a category SH(F ), the Morel-Voevodsky
stable homotopy category of F , which is supposed to be a “stable homotopy theory of smooth
varieties”. We expect cohomological functors to factor through a canonical functor from SmF , the
category of smooth schemes over F , to SH(F ).

In particular, we expect to have the following diagrams of functors:

SmF
//

Hp(−,Z(q)), KQ
i (−) $$

SH(F )

��

Ab

9note: there is a natural quasi-isomorphism from F • to Tot(I•,•), so the hypercohomoogy of F • is also Hi(RF )
with RF the derived functor of F , defined on the derived category of sheaves. See the Stacks Project, Tag 0133
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We also want the vertical functors to be representable, as is the case with topological K-theory
and singular homology. One construction of the motivic spectral sequence uses Voevodsky’s “slice
filtration” (analogous to the Postnikov filtration in usual stable homotopy theory). Just as singular
cohomology of a space may be defined without first defining the stable homotopy category and
Eilenberg–MacLane spectra, so may motivic cohomology be defined in a direct and “elementary”
way (using only chain complexes, no fancier stable homotopy theory). Today, we will discuss the
“direct” definition of Hp(X;Z(q)) for X smooth over a field F . Some references are the summary
in Section 2.1 of Voevodsky’s ’96 preprint “The Milnor Conjecture”, [14], and the textbook [11].

First, we discuss cycles on a smooth F -scheme X: compare the theory developed in [5].

Definition 5.1. A cycle on a smooth F -scheme X is a finite linear combination
∑
nV [V ] with

nV ∈ Z and V ⊆ X a closed subvariety (i.e. a closed irreducible topological subspace or
equivalently a closed irreducible reduced subscheme, but not necessarily smooth).

If f : X → Y is a proper map, then the topological image W = f(V ) ⊆ Y is a closed and
irreducible subvariety of Y . We define:

Definition 5.2. For f : X → Y a proper map between smooth F -schemes, the proper pushforward
f∗ is defined by:

f∗
(
[V ]
)

=

{
0 dimW < dimV

(K(V ) : K(W ))[W ]

Here (K(V ) : K(W )) is the degree of the function field extension K(W ) ↪−→ K(V ), which is
finite when dimW = dimV .

Cycles allow the development of intersection theory:

Definition 5.3. If V,W ⊆ X are subvarieties of the smooth F -scheme X , then we say the intersec-
tion V ∩W is proper if each irreducible component T ⊆ V ∩W satisfies

codim(T ) = codim(V ) + codim(W )

This is something like transversality in topology, but it is much weaker. For example, the line
Y = 0 and the parabola Y = X2 in the affine plane A2

F = SpecF [X, Y ] have proper intersection
but are not transverse since they are tangent at their intersection point (0, 0).

If V,W have proper intersection, we want to define

[V ] · [W ] =
∑

T⊆V ∩W
irreducible component

nT [T ]

for “multiplicities” nT . To define this, let OX,T be the local ring of X along T , i.e. the stalk of OX at
the generic point SpecK(T ) ↪−→ T . (This ring consists exactly of those regular functions defined
on open subsets U ⊆ X such that U ∩ T 6= ∅.) Let I ,J be the ideals of OX,T corresponding to
the closed subvarieties V,W respectively. Now, we define:

Definition 5.4 (Serre’s formula). If V,W are two closed subvarieties of a smooth F -scheme X
with proper intersection, then for each irreducible component T ⊆ V ∩W , we have:

nT =
∞∑
i=0

(−1)ilengthOX,T
ToriOX,T

(
OX,T/I ,OX,T/J

)
16



Note that this formula specializes to nT = lengthOX,T
OX,T/(I + J ) if we are in a setting

where the higher Tor groups vanish. Note that I + J is the ideal of OX,T corresponding to the
scheme-theoretic intersection of V and W at T .

Example 5.5. Let X = A2
F = SpecF [X, Y ], V the line Y = 0 so V = SpecF [X, Y ]/(Y ), and

W the parabola Y = X2, so W = SpecF [X, Y ]/(Y −X2). Then the topological intersection of
V and W consists of the point (0, 0), so we have T = F [X, Y ]/(X, Y ) and OX,T = F [X, Y ](X,Y ).
Then OX,T/(I + J ) = F [X, Y ](X,Y )/(Y,X

2) ' F [X]/(X2). This has length 2 over OX,T , and
nT = 2. Thus, we have:

[V ] · [W ] = 2[(0, 0)]

Next, we will define the category of correspondences over F . The objects of this category
will be smooth F -schemes, but there will be additional morphisms. There is an analogue to this
construction in topology:

Let X be a space. Then we can define the n-th symmetric power of X SPn(X) = Xn/Sn
(where Sn is the symmetric group acting on Xn by permuting the factors). Then we have a diagram:

X //
⊔∞
n=0 SPn(X)

��

SP(X)

Here,
⊔∞
n=0 SPn(X) is the free topological abelian monoid generated by X , and SP(X) is the free

topological abelian group generated by X . Points of SP(X) consist of Z-linear combination of
points of X .

A map f : X →
⊔
n SPn(Y ) is like a “multi-valued function” from X to Y , i.e. each point of

X maps to some finite set of points of Y , possibly with multiplicity. A map f : X → SP(Y ) sends
each point of X to some Z-linear combination of points in Y .

Given maps f : X → SP(Y ) and g : Y → SP(Z), we obtain a map X → SP(Z):

X
f
// SP(Y )

SP(g)
// SP(SP(Z)) // SP(Z)

Here, the final map SP(SP(Z)) is defined by “expanding” linear combinations of linear combina-
tions of points of Z. Thus, we have a category whose objects are topological spaces and whose
morphisms from X to Y consist of maps from X to SP(Y ). We want to do something similar in
algebraic geometry.

Definition 5.6. An elementary correspondence f : X ; Y is a subvariety V ⊆ X × Y such that
the map V → X defined by restricting the first projection p1 : X × Y −� X to V is a finite
morphism which is surjective onto a component of X .

The intuition is that such V are the graphs of “multi-valued functions” from X to Y .
This lets us define:

Definition 5.7. CorrF (X, Y ) is the set of Z-linear combinations of elementary correspondences
X ; Y . This is a subset of the set of cycles on X × Y .
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We give some examples of correspondences:

Example 5.8. Given a morphism f : X → Y , the graph Γf ↪−→ X × Y is a correspondence
from X to Y , which is elementary when X is connected. (Otherwise it is the formal sum of one
elementary correspondence for each component of X .)

Example 5.9. Consider the multi-valued function C → C defined by z 7→ ±
√
z. We can

realize this as a correspondence from X = A1
C to X = A1

C. Define V ⊆ X × Y = A2
C by

V = SpecC[X, Y ]/(X − Y 2). The projection to X is a surjective finite morphism of degree 2, so
this is an elementary correspondence.

We may define a bilinear composition law on the groups of correspondences, making the
category of smooth F -schemes and correspondences into an additive category:

Definition 5.10. For X, Y, Z smooth F -schemes, the composition law on CorrF is the bilinear map
CorrF (X, Y )× CorrF (Y, Z)→ CorrF (X,Z) defined by sending (V,W ) with V ⊆ X × Y,W ⊆
Y ×Z elementary correspondences to p∗

(
[V × Z] · [X ×W ]

)
, with p : X × Y ×Z → X ×Z the

projection map and · the intersection formula defined above.

Lemma 5.11. The above definitions give a well-defined associative composition law, making CorrF
into a category. Moreover, there is a faithful embedding SmF ↪−→ CorrF which is the identity on
objects and sends f : X → Y to Γf ⊆ X × Y .

6 1/22/2018
We continue to develop motivic cohomology. Last time, we considered the category SmF of smooth
varieties over the field F , and we defined a functor from this to a category called CorrF , the
“correspondence category”. This is an additive category, with X t Y the categorical co-product and
product in this category. However, this category is not abelian, i.e. there are not usually kernels and
cokernels.

Remark 6.1. Suppose a category has the properties that finite products and coproducts exist, that
the canonical map from the initial object to the terminal object is an isomorphism, and that the
canonical map X tY → X×Y from the coproduct to the product is an isomorphism for all objects
X and Y . Then all morphism sets canonically inherit the structure of commutative monoids: for
f, g : X → Y , we define f + g : X → Y by codiag ◦ (f × g), with codiag : Y ×Y ∼−→ Y tY → Y
given by idt id. The category is additive if these abelian monoids are groups, in which case
composition is automatically bilinear. Notice that being additive is entirely a property of a category
(not extra data!).

There is a fully faithful embedding from CorrF to the category PST of “presheaves with
transfer” on SmF . This is the category of additive functors from Corrop

F to Ab. These functors
are specified by associating an abelian group S(X) to each smooth F -scheme X , together with
homomorphisms S(X)⊗Z CorrF (X, Y )→ S(Y ) which are compatible with the composition on
CorrF .

We denote this embedding by X 7→ Ztr(X) = CorrF (−, X). The reason for the terminology is
that we obtain “transfer” maps f∗ for finite surjective maps f : X → Y . This is because for such an
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f , the graph Γf ⊆ X × Y defines a correspondence from Y to X . Unlike CorrF , the category PST
is abelian, with kernels and cokernels which may be computed “pointwise”: if S, T ∈ PST and
η : S → T is a morphism, (ker η)(X) = ker

(
η(X)

)
for each X ∈ SmF .

Consider A1 \ {0} = SpecF [t, t−1], also called Gm. Consider the maps pt = SpecF →
Gm → pt where the first map is the point 1 and the second is the terminal map. We obtain a
diagram:

Ztr(pt)→ Ztr(A
1 \ {0})→ Ztr(pt)

Since the composition of the two maps is the identity, we get a canonical splitting:

Ztr(A
1 \ {0}) ' Ztr(pt)⊕ Cok

(
Ztr(pt)→ Ztr(A

1 \ {0})
)

=: Ztr(pt)⊕ Ztr(Gm, 1)

We may play a similar game and get a diagram of split exact sequences:

Ztr(pt× pt) //

��

Ztr(pt×Gm) //

��

Ztr(Gm, 1)

��

Ztr(Gm × pt) //

��

Ztr(Gm ×Gm) //

��

Cok

��

Ztr(Gm, 1) // Cok // Ztr(Gm, 1)∧2

This gives us:
Ztr(Gm ×Gm) ' Ztr(pt)⊕ 2Ztr(Gm, 1)⊕ Ztr((Gm, 1)2)

More generally, we have:

Ztr(G
n
m) '

n⊕
i=0

(
n

i

)
Ztr

(
(Gm, 1)i

)
And here, Ztr

(
(Gm, 1)n

)
is the cokernel of the map∑

Ztr(Gm ×Gm × · · · × pt×Gm × · · · ×Gm)→ Ztr(Gm × · · · ×Gm)

This is reminiscent of the behavior of the smash product of pointed topological spaces: if we
replace Gm by the topological space S1 and the pair (Gm, 1) of schemes with the pointed topological
space (S1, 1), then the n-fold “smash product” is the n-sphere (S1, 1)∧n ∼= Sn. On the level of
singular chains, we have a splitting C∗(S1) ∼= Z⊕ C∗(S1, 1) and a similar chain level “binomial
formula” (up to quasi-isomorphism at least) for C∗((S1)×n) ' (C∗(S

1))⊗n ∼= (Z⊕ C∗(S1, 1))⊗n.
We can’t form anything like an actual smash product in the category of schemes, but in PST we
may nevertheless form something which behaves like the chains on the smash product.

Definition 6.2. We say that F ∈ PST is a homotopy invariant object if π∗ : F (X)→ F (X ×A1)
is an isomorphism for all X .

We wantX×A1 → X to be a “homotopy equivalence”. How do we make a functor F : Smop
F →

Ab homotopy invariant?
We define:
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Definition 6.3. The standard n-simplex is ∆n = SpecZ[t0, . . . , tn]/(
∑

i ti = 1) ' An
Z. We also

define ∆n
X = X ×Z ∆n.

We have face maps δ0, · · · , δn : ∆n−1 → ∆n and degeneracy maps in the other direction, as
usual for simplicial sets. The ∆i fit together into a co-simplicial scheme, i.e. a functor from the
simplex category ∆ into the category of schemes.

Given F : Smop
F → Ab, we define:

Definition 6.4. (CnF )(X) = F (X ×Z ∆n). This is a simplicial abelian group with maps di =
δ∗i : F (∆n

X)→ F (∆n−1
X ). We define a differential δ =

∑
i(−1)idi : Cn(F )→ Cn−1(F ).

Remark 6.5. Sometimes, we may consider instead the normalized chain complex given by NnF =⋂n
i=1 Ker(di), with differential induced by d0. For general reasons of simplicial abelian groups, this

is quasi-isomorphic to the one above.

Now, this gives us a functor C∗F : Smop
F → Ch, where Ch is the category of N-graded chain

complexes.
We have:

Lemma 6.6. If i0, i1 : X → X ×A1 are the maps induced by the inclusion of the points 0, 1 ∈
A1(F ), the corresponding maps

(i0)∗, (i1)∗ : (C∗F )
(
X ×A1

)
→ C∗F (X)

are chain homotopic. In particular, they induce the same maps on homology.

These give 1-sided inverses to the map π∗ : (C∗F )(X) → (C∗F )
(
X ×A1

)
, and a two-sided

inverse up to chain homotopy.
We have:

Corollary 6.7. π∗ is a quasi-isomorphism, i.e. the functor Hn

(
(C∗F )(−)

)
is a homotopy-invariant

object.

Note that we always have a surjective map from F (X) = F (X ×∆0) = C0F (where ∆0 =
SpecF is just a point) to H0(C∗F ). Similarly, given F∗ : Smop

F → Ch, we obtain a map from this
to the complex Tot(C∗F∗).

Also, if F : Corrop
F → Ab is defined on the correspondence category, i.e. F ∈ PST, then we

may similarly consider C∗F : Corrop
F → Ch.

We define:

Definition 6.8. Z(n) = C∗Ztr

(
(Gm, 1)n

)
[−n] ∈ Ch(PST).

This is a cochain complex of PST’s concentrated in cohomological degrees (−∞, n], i.e. it
looks like:

0 Z(n)noo Z(n)n−1oo · · ·oo Z(n)0oo Z(n)−1oo · · ·oo

Now, we may define the motivic cohomology groups:
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Definition 6.9. For X ∈ SmF , the motivic cohomology groups Hp,q(X) = Hp,q(X;Z) are defined
to be the Zariski sheaf (hyper-) cohomology Hp(X;Z(q)). More generally, for an abelian group
A we define A(q) ∈ Ch(PST) as A ⊗Z Z(q). Then we have Hp,q(X;A) := Hp(X;A(q)). (We
shall see later that Z(q) and more generally A(q) are in fact cochain complexes of sheaves, not just
presheaves. This boils down to Ztr(X) being a Zariski sheaf for any X .)

The easiest case to understand is q = 0. We have Ztr

(
(Gm, 1)0

)
= Ztr(pt). As a functor, this

sends X to the constant sheaf Z on X . Since this already respects the “homotopy equivalence”
X ×A1 → X , taking chains does nothing (because A1 and more generally ∆p

F is connected, so
locally constant maps out of X × ∆p

f are the same as locally constant maps out of X), i.e. the
homology of C∗Ztr(pt) is concentrated in degree 0. (The normalized chain complex is concentrated
in degree 0 even on the chain level.) Then essentially the same computation as that of the singular
cohomology of a point shows us that Hp,0(X;A) = Hp

Zar(X,A).
Up next, we will see that there is a quasi-isomorphism Ztr(Gm)

∼−→ Z ⊕ O×, and this shows
that Hp,1(X) ' Hp−1

Zar (X,O×X), as predicted. Also, we will see that for a field extension F ↪−→ k,
we have an isomorphism Hp,p(Spec k) ' KM

p (k).

7 1/24/18
Last time, we defined the objects Z(n) = C∗Ztr(Gm, 1)n[−n]. This is a cochain complex in the
category PST of presheaves with transfer on the category of smooth F -schemes. Actually, the Z(n)
are really complexes of sheaves for the Zariski topology. To see this, first note that a representable
functor in this category, i.e. a functor CorrF → Ab of the form U 7→ CorrF (U, Y ) for a smooth
F -scheme Y , is a Zariski sheaf. This is because an elementary correspondence X ; Y is uniquely
determined by the restriction to any non-empty dense open subset U ⊆ X:

Lemma 7.1. The restriction map CorrF (X, Y ) → CorrF (U, Y ) is injective with free cokernel.
Moreover, if X = U ∪ V for U, V dense open subsets, then the following sequence is exact and
remains exact after applying A⊗Z (−) for any abelian group A:

0 // Ztr(Y )(X) // Ztr(Y )(U)⊕ Ztr(Y )(V ) // Ztr(Y )(U ∩ V )

Since Ztr(Y ) is a sheaf for any Y ∈ SmF , so are direct summands of such presheaves such as
Ztr(Gm, 1). Therefore, for any abelian group A, A(n) is a cochain complex of sheaves.

Now, if F is a sheaf of abelian groups, the complex C∗F is a cochain complex of sheaves
with the property that C∗F (X × A1) → C∗F (X) is a quasi-isomorphism. Thus, the presheaf
X 7→ Hn((C∗F )(X)) is a homotopy-invariant presheaf. However, it may not be a sheaf in general,
and this does not in any way formally imply that the hypercohomology H∗(X;C∗F ) is also
homotopy-invariant. Voevodsky proved the latter statement when F has transfers, but this requires
a long and careful argument and is special to the Zariski (and Nisnevich) topologies.10

We collect some “elementary” (i.e. not Fields Medal-winning) properties of the motivic
cohomology:

Proposition 7.2. The following properties hold for the motivic cohomology groups Hp,q(X) =
Hp(X;Z(q)):

10see the last 4 chapters of [11]
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(i) There are Mayer-Vietoris sequences.

(ii) There is a Thom isomorphism.

(iii) Hp,q(X) = Hp(X;Z(q)) = 0 for p > q+dim(X). (This follows easily from Grothendieck’s
theorem that Hk(F ) = 0 for k > dim(X) for any abelian sheaf F and topological space
X).

(iv) Motivic cohomology Hp,q(X) is functorial on X ∈ CorrF , i.e. there are pullbacks f ∗ for any
f : X → Y and transfers f∗ for any finite f : X → Y .

(v) Motivic cohomology is “independent of F ”: this makes sense since Gm is defined over Z
and X ×F (Gm)F = X ×Z Gm, so CorrF (X,Gm) does not depend on F .

We also have products. There is a map

CorrF (X, Y )⊗ CorrF (X ′, Y ′)→ CorrF (X ×X ′, Y × Y ′)

defined by Z ⊗ Z ′ → Z × Z ′.
Taking X = X ′, we get a map of presheaves:

Ztr(Y )⊗Z Ztr(Y
′)→ Ztr(Y × Y ′)

where the tensor product is taken (objectwise) in the category PST. This sends Z ⊗Z ′ to Z ×Z ′|∆.
This gives a pairing:

Ztr

(
(Gm, 1)n

)
⊗ Ztr

(
(Gm, 1)n

′
)
→ Ztr

(
(Gm, 1)n+n′

)
Evaluating this on X ×∆p gives a level-wise product. We can use the Eilenberg-Zilber formula to
get a map Z(n)⊗Z(n′)→ Z(n+n′): letA•, B• be simplicial abelian groups (i.e. simplicial objects
in the category of abelian group). Then the Eilenberg-Zilber formula gives a quasi-isomorphism
between C(A•) ⊗ C(B•) and C(A• ⊗ B•). The tensor product on the left is on the category of
chain complexes, and the one on the right is on the category of simplicial abelian groups. All of this
put together means that the group

⊕
p,qH

p(X;Z(q)) admits the structure of a bi-graded ring which
is graded-commutative with respect to p.

Now, we will discuss some special cases. We saw that Hp(X;Z(0)) = Hp(X;Z) last time. We
also have an isomorphism H1(X;Z(1)) ' O×X is done in e.g. [11]. In addition, when X = SpecF ,
we’ll see that Hn(X;Z(n)) ' KM

n (F ).
First, forX = SpecF ,Hn(Z(n)(X)) = H∗(X;Z(n)) := Cok

(
d : Z(n)n−1(X)→ Z(n)n(X)

)
.

This uses the fact that X = SpecF : topologically, X is a point, so the global sections functor
induces an exact equivalence from the category of abelian sheaves on X to the category of abelian
groups. Thus, hypercohomology of a complex is the same as the cohomology of its global sections,
so Hp(X;Z(n)) is the p-th cohomology of the complex Z(n)•(X).

We have d : Z(n)n−1(X)→ Z(n)n(X) is the same thing as

C1Ztr

(
(Gm, 1)n

)
(X)→ C0Ztr

(
(Gm, 1)n

)
(X)

An elementary correspondence Z ⊆ SpecF ×Gn
m is the same thing as a finite field extension

E/F and a map SpecE → Gn
m, i.e. an element x ∈ E× × · · · × E×. In particular, for a =
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(a1, . . . , an) ∈ (F×)n, we have a class [a1 : · · · : an] ∈ Hn(SpecF ;Z(n)). This equals [a1] ·
[a2] · · · [an] where the product is as defined above.

Now, this gives us a map KM
1 (F ) = F× → H1(F ;Z(1)) sending a to [a]. We have:

Lemma 7.3.
[ab] = [a] + [b]

Proof. Note that [1] = 0 because this maps to the kernel of Ztr(Gm) → Ztr

(
(Gm, 1)

)
. Now, we

claim that [ab] + [1] = [a] + [b].
Note that ∆1 = SpecF [t0, t1]/(t0 + t1 = 1) ' SpecF [t] = A1

F , under which the two face
maps ∆0 → ∆1 correspond to the inclusions of the two points {0} and {1} into A1

F . We define an
interpolation from [ab] + [1] to [a] + [b] parametrized by the s-line SpecF [s]. Consider the curve in
the (s, t) plane SpecF [s, t] defined by:

0 = s(t− a)(t− b) + (1− s)(t− ab)(t− 1)

= s
(
t2 − (a+ b)t+ ab

)
+ (1− s)

(
t2 − (ab+ 1)t+ ab

)
= t2 +

(
(ab− a− b+ 1)s− (ab+ 1)

)
t+ ab

This curve is finite over SpecF [s] = A1
F , so it defines a correspondence from A1

F to A1
F =

SpecF [t]. Since its intersection with the line t = 0 is empty, it actually defines a correspondence to
Gm. The restriction of this correspondence to s = 1 gives [a]+ [b], and the restriction to s = 0 gives
[ab]+1, so we have the desired homotopy showing [a]+[b] = [ab]+[1] = [ab] in H1(F ;Z(1)).

This shows that we obtain a well-defined homomorphism of rings

TZF
× =

⊕
n

(F×)⊗n →
⊕
n

Hn(F ;Z(n))

which sends a1 ⊗ · · · ⊗ an → [a1] · [a2] · · · [an] = [a1 : · · · : an].
Next time, we will see that [a] · [1− a] = 0 if a ∈ F× \ {1}. This will show that the above map

descends to a homomorphism KM
∗ (F )→

⊕
nH

n(F ;Z(n)) which sends `(a) to [a]. Furthermore,
we will see that this is in fact an isomorphism.

8 1/26/18
(notes in progress)

9 1/29/18
Last time, we defined a mapKM

n (F )→ Hn(SpecF ;Z(n)) denoted `(a1) · · · · · · `(an) 7→ [a1; · · · ; an]
and proved that this is well-defined (i.e. that it is a homomorphism for n = 1 and that the Steinberg
relation holds in H2(SpecF ;Z(2))). We also proved surjectivity for n = 1. Proving surjectivity
and injectivity for all n requires more work, see [11, Lecture 5] (the proof uses “norm” (transfer)
maps KM

n (E) → KM
n (F ) for a finite field extension F ↪−→ E, which are constructed carefully

in [7]). Similarly, we may show that KM
n (F )/`

∼−→ Hn(SpecF ;Z/`(n)). This result should be
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regarded as easier than the Milnor conjecture, which asserted an isomorphism between KM
n (F )/2

to Hn(GF ;Z/2), and boils this down to showing that Hn(SpecF ;Z/2(n))
∼−→ Hn(GF ;Z/2). So

far, we have not made any use of “motivic homotopy theory”, which will be an ingredient in the
proof.

Let’s recall the situation in topology. We can consider a category of spaces such as Top
(topological spaces) or sSets (simplicial sets) with the singular cohomology functor Hn from this
category to Ab. This functor admits some interesting factorizations:

Spaces Σ∞ //

Csing
∗ (−;Z)

&&
Hn

��

Ho(Spectra)

C∗
��

D(Z)

[−,ΣnZ]
��

Ab

Here D(Z) is the derived category of SpecZ, defined to be the category of chain complexes of
projective Z-modules with morphisms chain homotopy classes of maps of complexes. The map from
D(Z) to Ab which sends a complex to its n-th cohomology is representable: Hn(C•) = [C•,ΣnZ]
where ΣnZ is the chain complex with value Z in grading n and 0 everywhere else. The category at
the top right is the homotopy category of spectra, and the map X 7→ Σ∞(X) sending a space to its
suspension spectrum could be thought of as taking chains “with values in the sphere spectrum S”.
Furthermore, cohomology is representable in the category of spectra: Hn(X) = [Σ∞X,ΣnHZ] in
the category of spectra, where HZ is the Eilenberg-Mac Lane spectrum. Cohomology operations
Hn → Hn+k come from maps HZ→ ΣkHZ which are “not Z-linear” but only “S-linear”. (The
sphere spectrum is a so-called “E∞ ring spectrum”, which is a generalization of ordinary rings;
the existence of non-trivial cohomology operations is an indication that singular chains arise from
“base change” along a map of ring spectra S → HZ. An analogous but simpler fact is that the
Bockstein homomorphism H∗(−;Fp) → H∗+1(−;Fp) does not come from a Fp linear map of
mod Fp-chains; its existence witnesses that mod p chains C∗(X;Fp) arises from base change along
Z→ Fp.)

Something similar should work for motivic cohomology, with the category of spaces replaced
by SmF , the category of smooth F -schemes:

SmF
Σ∞ //

%%

Hp(−;Z(q))

��

SH(F )

��

DM−(F )

[−,ΣpZ(q)]
��

Ab

We construct the categories appearing on the right-hand side as follows. We may embed SmF

into the category of simplicial presheaves on SmF , i.e. the category of functors from Smop
F to sSet.

We have a notion of weak equivalence on this category: a natural transformation η from F to G is a
weak equivalence if ηX : F (X)→ G(X) is a weak equivalence in sSet for each object X . In other
words, this category is a model category, which means it is suitable for doing homotopy theory.

24



Alternatively, we may embed the additive category CorrF of smooth schemes and correspon-
dences into sPST, the category of additive functors from Corrop

F into the category of simplicial
abelian groups sAb, which is equivalent to the category of N-graded chain complexes C∗(Ab).
This also has a notion of weak equivalences, defined by quasi-isomorphism on the level of chain
complexes.

However, these constructions do not have “enough” weak equivalences: they do not capture the
“locality” of cohomology on SmF , i.e. they do not take into account the presence of a topology
on SmF . Thus, we want to “localize” further. In the simplicial set version, we invert stalk-wise
weak equivalence and maps induced by projection X ×A1 → X , and then make the operation
of smashing with (P1,∞) invertible to get the category SH(F ) of spectrum objects. In the chain
complex version, we invert stalk-wise quasi-isomorphisms and homotopy equivalences to get the
category DMeff

− , and further force the operation of tensoring with Z(1) to be invertible to get the
category DM−.11 The chain complex version is easier since we may use the tools of homological
algebra rather than model categories.

What do we mean when we say “stalk-wise”? This is with respect to the Nisnevich topology.
Consider X = SpecR an affine scheme with a Zariski sheaf F of sets on it. For any point
x ∈ X corresponding to a prime ideal p, the stalk in the Zariski topology lim−→x∈U⊆X, U open

F (U) =

F (SpecR(p)). The Nisnevich topology is a Grothendieck topology on the category of F -schemes
which is finer than the Zariski topology. The stalks here are no longer defined by evaluation at R(p)

but at its henselization Rh
(p).

Definition 9.1. A local ring R is henselian if for every monic polynomial f(t) ∈ R[t] such that
f(t) ∈ R/m[t] factors as f(t) = (t− a0) · g(t) with g(a0) 6= 0, then there exists some a0 ∈ R with
f(a0) = 0 and a0 7→ a0 under the projection R→ R/m.

Hensel’s lemma says that complete local rings are henselian, but the converse is not true. There
is a ring Rh, the henselization of R, which is initial for maps from R to henselian local rings. Thus,
we have a factorization R → Rh → R̂, with R̂ the m-adic completion. The henselization can be
defined as the direct limit of all étale maps R → R′ which induce isomorphisms on the residue
field.12

10 1/31/18
We’re heading towards Voevodsky’s definition of the category DM−(F ), the “derived category of
motives over F ”. We’ll cover roughly §3 of [19] (the treatment in [11] is essentially a verbatim
copy).

Let X be a smooth scheme over F . We may consider the full sub-category Et/X of étale
X-schemes inside the category of X-schemes, i.e. the category of arrows f : Y → X , where a
morphism between arrows is a commuting triangle.

11Voevodsky’s cancellation theorem, which is a difficult theorem, asserts that this operation is full and faithful. It
amounts to demonstrating certain suspension isomorphisms in motivic cohomology. This is a real theorem because we
don’t have Z(1) = ΣZ(0).

12NB: This is not the same as the strict henselization, which gives the stalks in the étale topology. The strict
henselization of R is the initial map R→ Rsh such that Rsh is henselian with separably closed residue field, and is the
limit of all étale maps R→ R′.
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Let’s recall one of several equivalent definitions of an étale map f : Y → X:

Definition 10.1. We say that f is étale if there is a cover of Y by open affine charts SpecR =
U ⊆ Y and for each U , there is an open cover of f−1(U) ⊆ X by open affine charts W ⊆
Spec

(
R[x1, . . . , xn]/(f1, . . . , fn)

)
such that det

(
∂fi
∂fj

)
∈ R[x1, . . . , xn] is invertible on W .

It’s a non-trivial theorem13 that we may actually take n = 1 above. That is, Zariski-locally, any
étale map looks like Spec

(
R[x]/f(x)[1

g
]
)
→ SpecR with f(x) ∈ R[x] monic and f ′(x) a unit in

R[x]/f(x)[1
g
]. These local models are called “standard étale”.

For smooth schemes over C, an étale map is locally a codimension 0 submersion, i.e. a local
isomorphism in the analytic topology. In general, we may think of the definition of étale maps as
asserting the hypothesis of the inverse function theorem. The idea of replacing the Zariski topology
with the étale topology is that we want to consider such things to be local isomorphisms, but this is
not actually the case in the Zariski topology.

Now, we may define the appropriate notion of neighborhood for the Nisnevich topology:

Definition 10.2. A Nisnevich neighborhood of x ∈ X is a triple (U, n, h) such that the following
diagram commutes:

U

h

��

Spec k(x)

n
::

x // X

such that h is étale.

The Nisnevich neighborhoods of a point x form a category, where morphisms are commuting
diagrams of the form:

U

��

��

Spec k(x)

::

$$

X

U ′

??

Lemma 10.3. This is a filtered category, meaning that: (i) for any two Nisnevich neighborhoods
U,U ′ → X of x (omitting the morphism from Spec(k(x)) from the notation), there exists a
Nishnevich neighborhood mapping to both of them, and (ii) for any two parallel morphisms
U ′ ⇒ U of Nishnevich neighborhoods of x there exists a morphism U ′′ → U ′ of Nisnevich
neighborhoods such that the two compositions U ′′ → U ′ ⇒ U become equal.14

Taking colimits over a filtered category (as we shall do in the definition of stalks) commutes
with arbitrary finite limits.

Now, we may consider a presheaf F :
(
Et/X

)op → Set (or Ab, etc.). In particular, this gives
a functor on the category of Nisnevich neighborhoods of any x ∈ X .

This lets us define:.
13See [15, Tag 02GT]
14see e.g. [15, Tag 04GN] for a proof that this is a filtered category. The argument is the same as in the étale case, so

if you know a proof there it should apply here too.
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Definition 10.4. The Nisnevich stalk at x ∈ X is the colimit

lim−→
Spec k(x)→U→X

F (U)

where the colimit ranges over the filtered category of Nisnevich neighborhoods of x in X .

If F is a sheaf of (for example) abelian groups, it does not matter whether we compute the
colimit in abelian groups or in sets. The point is that “abelian group” is defined using only finite
limits (e.g. the addition + : A× A→ A involves the two-fold product of A with itself), so even if
we compute the colimit in sets, it automatically inherits an abelian group structure.

Example 10.5. The Nisnevich stalk of OSpec(R) at the point determined by a prime ideal p is
precisely the Henselization of the localization R(p). (The localization itself is the Zariski stalk.)

Note that the Zariski stalk at x is the colimit over the (filtered) sub-category of U such that
U → X is an open immersion (or even the poset consisting of Zariski open subsets containing x),
so this definition extends that one in some sense. More precisely, it gives a map from the Zariski
stalk to the Nisnevich stalk.

Now, let F → G be a morphism of étale presheaves over X . We say that it is a stalkwise
isomorphism if the induced maps of stalks is an isomorphism for all x ∈ X . We want to define
Nisnevich sheaves, together with a Nisnevich sheafification functor F → F∼

Nis which is an initial
stalkwise isomorphism to a Nisnevich sheaf. In other words, the sheafification functor should be a
left adjoint to the inclusion of the full subcategory of Nisnevich sheaves on X into the category of
étale presheaves over X . We want this functor to moreover be a left inverse to the inclusion functor,
i.e. the sheafification of a sheaf should be itself.

Remark 10.6. Why do we define (pre)-sheaves in the Nisnevich topology to be sheaves on the
full small étale site of X? The problem is that there is no reasonable notion of a “Nisnevich map”
Y → X: the Nisnevich condition requires specifying a point x ∈ X . For example, it is not true
that if U → X is a Nisnevich neighborhood of x, then there is some refinement of U which is a
Nisnevich neighborhood of all points in its image.

Before even asking whether F is a Nisnevich sheaf, it must be a presheaf on at least the étale
maps U → X (the “small étale site of X”). Often, F will be a functor on all of SmF , in which case
the sheaf condition is checked after precomposing with Et/X → SmF , for all X .

In order to define Nisnevich sheaves, we need the following definition:

Definition 10.7. If fi : Ui → X are étale maps, we say that f : U := tiUi → X is a Nisnevich
cover if for all x ∈ X , we may fill in the dotted arrow in the diagram below:

U

��

Spec k(x)��

::

x // X

Note that the étale map U → X is surjective iff for each x ∈ X , there exists some lifting
Spec k′ → U for a finite separable field extension k′/k(x). An étale cover is a surjective étale map.
Note that if Ui → X are open immersions, then this condition says exactly that X = ∪iUi.
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Now, we may define Nisnevich sheaves. For any Nisnevich cover U → X , we may consider the
simplicial object

X Uoo U ×X Uoo
oo U ×X U ×X U

oo
oo
oo · · ·

oo
oo
oo
oo

in Et/X . If F is an étale presheaf on X , this defines a diagram:

F (X) //F (U) //
//F (U ×X U) //

//
//
F (U ×X U ×X U)

//
//
//
//

· · ·

Then we say that F is a Nisnevich sheaf on X iff for every Nisnevich cover U → X , the first map
F (X)→ F (U) is the equalizer of the two maps F (U)→ F (U ×X U).

Note that when U = tUi where Ui → X are open immersions, U ×X U = ti,jUi ∩ Uj ,
U ×X U ×X U = ti,j,kUi ∩ Uj ∩ Uk, etc., so this definition recovers the ordinary definition of a
Zariski sheaf.

Now, we have the category ShNis(Et/X) of Nisnevich sheaves. If F : Smop
F → Ab is a functor,

since for any X ∈ SmF , we have an inclusion functor
(
Et/X

)op
↪−→ Smop

F , we may ask whether
the composition of F with this inclusion is a Nisnevich sheaf. If this is the case, we will abuse
terminology to say that F is a Nisnevich sheaf. A similar story works when F is a functor defined
on CorrF : we say that it is a “Nisnevich sheaf with transfers” if it is a presheaf with transfer which
is a sheaf when forgetting the transfers.

Example 10.8. For Y a smooth F -scheme, F = Ztr(Y ) is a Nisnevich sheaf.15

We will construct DM−(F ) as the derived category of the category of chain complexes on
the full subcategory of Nisnevich sheaves F on CorrF with homotopy invariant cohomology
presheaves.

Next time, we will prove that if F is a presheaf with transfers, then the Nisnevich sheafification
canonically again has transfers. This is one of the places that explicitly uses that we’re in the
Nisnevich topology.

Proposition 10.9. In order to verify that an étale presheaf over X is a Nisnevich sheaf, it suffices to
verify the sheaf axioms in the case of covers {Y → X,A→ X} with A ⊂ X an open subscheme
and Y → X an étale map which restricts to an isomorphism of the reduced schemes determined by
the complements Y \ f−1(A) to X \ A.

See the discussion around Definition 12.5 of [11] for a proof.

Example 10.10. An example with F = C would be X = A1 = SpecC[t], Y = A1 \ {0, z} for
some closed point z 6= 0, Y → X induced by t 7→ t2, and A = X \ {z2}. The restriction to
complementary reduced schemes Y \ f−1(A) = {−z} → {z2} = X \ A is an isomorphism of
schemes (both isomorphic to SpecC). The resulting cover {Y → X,A→ X} can’t be refined to
a Zariski cover since the regular function t on X does not have a square root Zariski locally near
z2 ∈ X .

15Lemma 6.2 of [11] proves the stronger statement that it is even an étale sheaf. The proof is not long, but uses
“faithfully flat descent”; there may be a more elementary proof in the Nisnevich case.
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We may consider ShNis(CorrF ) (here, the sheaves are valued in abelian groups) as a subcategory
of the category PST of presheaves with transfer. If F ∈ PST(F ), we may define a Nisnevich
sheafification F∼

Nis as a Nisnevich sheaf on the category SmF . This will canonically extend to a
Nisnevich sheaf on CorrF .

Now, if U = tiUi → X is a Nisnevich cover, we obtain a simplicial scheme

X Uoo U ×X Uoo
oo U ×X U ×X U

oo
oo
oo · · ·

oo
oo
oo
oo

This gives a simplicial complex of objects in PST:

Ztr(X) Ztr(U)oo Ztr(U ×X U)oo
oo · · ·

oo
oo
oo

We may consider this as a simplicial presheaf of abelian groups on SmF . We have:

Proposition 10.11. The complex obtained from this simplicial presheaf by taking Nisnevich stalks
at any x ∈ V ∈ SmF is exact.

11 2/2/18
Last time, we discussed the Nisnevich topology. We will start with an example:

Example 11.1. Let X = SpecR[t] = A1
R, and consider the point x = 1: SpecR → X . Then

we can say that “t has a square root Nisnevich locally near 1 ∈ X”. We have an étale map
SpecR[

√
t] \ {0} → SpecR[t], and the point 1: SpecR→ X lifts through a section SpecR→

SpecR[
√
t], so this is a Nisnevich neighborhood of x in X (i.e. we map SpecR to either one of√

t = ±1: it’s okay that there are two choices). Note that t does not have a square root Nisnevich
locally near −1, since there is no lift of −1: SpecR → X through SpecR[

√
t] \ {0}, as this

requires the field extension C/R.

Next, we will discuss Čech theory. Let f : U = tiUi → X be a Nisnevich cover of X . From
this, we may obtain an (augmented) simplicial scheme with Up = U ×X × · · · ×X U , with U
repeated p+ 1 times. There are p projection maps from this to Up−1, defining the structure of the
simplicial scheme, i.e. a functor from ∆ to schemes. In fact, we also have U−1 = X , and this forms
a augmented simplicial object in schemes: a functor from (∆ ∪ [−1])op to schemes, with [−1] = ∅.

Let us briefly discuss the analogue of this construction in Sets. Given a set X , we define a
simplicial set with X [p] = Xp+1, for [p] = {0, . . . , p} ∈ ∆op, p > 0 with the face maps given by
projections. Then the homotopy type |X•| is contractible when X is non-empty and empty when X
is empty. The topological realization of this simplicial set is the disjoint union ofXp+1×∆p modulo
the usual equivalence relation, and there is an explicit homotopy contracting |X•|, depending on the
choice of x0 ∈ X (the “straight line homotopy” inside each ∆p). More generally, we could consider
a map f : X → B and form the simplicial topological space [p] 7→ X ×B · · · ×B X . Any section
section x0 : B → X of f gives rise to a map B → |[p]→ X ×B · · · ×B X|, and again an explicit
“straight line” homotopy can be used to prove that this is a homotopy equivalence.

This phenomenon is a special case of so-called “extra degeneracies” in augmented simplicial
objects. Recall that for a simplicial object [p] 7→ Xp in any category, the degeneracies are maps
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si : Xp → Xp+1 for i = 0, . . . , p+ 1. An extra degeneracy is an additional map s−1 : Xp−1 → Xp

satisfying the relations:

si ◦ sj = (· · · ), di ◦ sj =


(· · · ) i < j

id i = j, j + 1

sj ◦ di−1 i > j + 1

, di ◦ s−1 =

{
id i = 0

s−1 ◦ di−1 i > 0

In the category of topological spaces, the extra degeneracy gives rise to a homotopy equivalence
|X•|

∼−→ X−1. In the category of abelian groups, it gives a chain contraction of the associated chain
complex, i.e. a chain homotopy between id and 0. Hence, if you have a chain complex that you’re
trying to prove is acyclic and the chain complex came from an augmented simplicial objectt, then
you might try to look for an extra degeneracy in that simplicial object.

Now, with f : U = tiUi → X a Nisnevich cover, we obtain an augmented chain complex of
objects of PST by:

0 Ztr(X)oo Ztr(U)oo Ztr(U ×X U)oo · · ·oo

Last time, we claimed that this has exact Nisnevich stalks (equivalently, vanishing homology
sheaves). Namely, if we choose some v ∈ V ∈ SmF , we obtain a complex of Nisnevich stalks at v
given by:

· · · lim−→Spec k(v)→W→V Ztr(Up)(W )oo · · ·oo

We may replace lim−→Spec k(v)→W→V Ztr(Up)(W ) with Ztr(Up)(SpecS), where S is the henselization
of OV,v, a henselian local ring.

The magic property of henselian local rings which ordinary local rings do not satisfy is the
following:

Proposition 11.2. Given a henselian local ring S and a finite S-algebra S → A, there is an
isomorphism A '

∏
i Si with Si henselian local rings. This lifts the splitting over the residue field

of S.

Proof. This is [15, 04GE].

Example 11.3. Consider the local ring S = Z(p) with p > 2, i.e. the localization of Z at the prime
ideal (p), and the finite S-algebra A = Z(p)[t]/(t

p−1 − 1). Over the residue field Fp, we have
Fp[t]/(t

p−1 − 1) '
∏p−1

i=1 Fp. However, this splitting does not lift: there is no non-trivial p− 1-st
root of 1 in Z(p). On the other hand, Hensel’s lemma guarantees that such a lifting works in the
henselian local ring Zp.

Now, consider a correspondence from W = SpecS to Up. This is given by a finite map
Z → SpecS and a morphism from Z to Up. We may compose this, as a correspondence, with
the canonical map from Up to X; thus, every correspondence from SpecS to Up “lives over” a
correspondence from SpecS to X . That in turn is given by some linear combination of closed
irreducible subsets T ⊆ SpecS×X with T/ SpecS finite. The set of irreducible subsets associated
to a particular correspondence from SpecS to Up may change upon composing with a face map
Up → Up−1 (e.g. there may be some cancellation happening), but only by making it smaller, i.e.
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passing to a subset. Hence each finite set of irreducible closed subsets of SpecS ×X gives rise
to a subcomplex of the chain complex (Ztr(Up)(Spec(S)), δ), and the whole chain complex is the
(filtered) colimit of these. To prove that the whole chain complex is acyclic, it therefore suffices
to prove that for each finite set T of closed irreducible subsets of SpecS ×X , the corresponding
chain complex is acyclic.

Fix T ⊆ SpecS×X . By Proposition 11.2, T ' t Spec(Ti) with Ti henselian local rings. Since
U → X is a Nisnevich cover, we may lift T → X to T → U (i.e. the Nisnevich condition says we
may lift residue fields of each Ti, and then because Ti is henselian local we may extend this lift to
each Ti and thus to T ).

Now, this construction gives us lift maps T → Up−1 ' X ×X Up−1 to T → Up, giving the extra
degeneracy map Ztr(Up)(S)→ Ztr(Up+1)(S) and hence the contraction.

Corollary 11.4. Let F ∈ PST(F ) be a presheaf with transfers. Then the Nisnevich sheafification
F∼

Nis of the underlying presheaf on SmF gives an object of ShNis(CorrF ), i.e. a Nisnevich sheaf
with transfers.

Corollary 11.5. The additive category ShNis(CorrF ) is an abelian category.

Proof. The only non-obvious part is existence of cokernels. It’s easy to see that there are cokernels
in PST(F ), namely just the “objectwise cokernels”. Sheafifying those gives a sheaf on SmF , which
by the corollary may be promoted to a sheaf with transfers. One then checks that this indeed defines
cokernels.

Let’s prove Corollary 11.4.

Proof. The corollary is really a “Definition/Corollary”, because we have to define functoriality
under correspondences. We will do this by “universal example”. Fix some ϕ ∈ F∼

Nis(Y ) and some
correspondence Z ⊆ X × Y in CorrF (X, Y ). We want to show that this correspondence sends ϕ
to an element Z∗ϕ of F∼

Nis(X).
By the construction of the sheafification, the canonical map F (Y )→ F∼

Nis(Y ) is typically not
surjective, but after passing to a suitable Nisnevich cover U → Y , the element ϕ may be represented
by an element ϕ0 ∈ ker

(
F (U)→ F (U ×Y U)

)
.

By the Yoneda lemma we may think of this as a map ϕ0 : Ztr(U) → F which pulls back to
0 under the map Ztr(U ×X U) → Ztr(U). Now, we know that the following complex has exact
Nisnevich stalks, and thus is an exact sequence in the category of Nisnevich sheaves:

0 Ztr(Y )oo Ztr(U)oo Ztr(U ×X U)oo · · ·oo

Thus, Ztr(Y ) is the cokernel in this category of Nisnevic sheaves on SmF of the map Ztr(U ×X
U)→ Ztr(U). Therefore we get that the composition ϕ0 : Ztr(U)→ F → F∼

Nis, which is a map
in the category of Nisnevich sheaves whose composition with Ztr(U ×X U)→ Ztr(U) is 0, factors
uniquely through a map Ztr(Y )→ F∼

Nis(Y ).
We may evaluate this map at Z ∈ Ztr(Y )(X) to get the desired transfer of ϕ.
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12 2/5/18
Last time, we discussed the abelian category ShNis(CorrF ) of Nisnevich sheaves with transfer. We
can form the bounded derived category D−(ShNis(CorrF ). This includes the objects = Ztr(X) and
the objects Z(i).

Inside this category is the full subcategory DMeff
− of sheaves with homotopy invariant coho-

mology sheaves. The cohomology sheaves of a complex F • are defined on X ∈ SmF as the
cohomology H i(F •(X)) of the complex F •(X), taken in the category of Nisnevich sheaves. In
other words, this is the kernel of F i(X) → F i+1(X) mod the image of F i−1(X) → F i(X)),
with kernel and image taken in the category of Nisnevich sheaves. This is also equal to the Nis-
nevich sheafification of the presheaf cohomology of the complex. The condition of a (pre)-sheaf
being homotopy invariant means that for any X , the projection map p1 : X ×A1 → X induces an
isomorphism (p1)∗ : F (X)→ F (X ×A1).

We can “force” a complex of sheaves F • to have homotopy invariant cohomology sheaves.
That is, we may form the complex C∗(F •) : X 7→ Tot(F •(X ×∆•)). By construction, the maps
p1 : X × A1 → X induce quasi-isomorphisms C∗(F •)(X) → C∗(F •)(X × A1). Thus, the
presheaves X 7→ H i(C∗(F •)(X)) are homotopy invariant.

However, the formation of the cohomology sheaves of C∗(F •) may destroy the sheaf condition,
so we have to sheafify again. One would think that sheafifying then might destroy the homotopy
invariance, but the following theorem says that it does not:

Theorem 12.1. If G ∈ PShNis(CorrF ) is homotopy invariant, then its sheafification G ∼ is also
homotopy invariant.

Proof. This is in [17].16.

We also have:

Theorem 12.2. If G is a Nisnevich presheaf, then H i
Zar(X; GZar) ' H i

Nis(X; GNis). (here, GZar

is the restriction of G to the small Zariski site of X , and GNis is the restriction of G to the small
Nisnevich site of X .)

Proof. Again, see [17].

We have a functor C∗ : D−(ShNis(CorrF ))→ DMeff
− which sends F to C∗F . Thinking of the

former as a triangulated category, we may consider the triangulated category DMeff
− as a localization

of this category with respect to the multiplicative system of morphisms Ztr(X ×A1)→ Ztr(X).
(See [15, 05R1] for this construction).

Now, we also have a functor SMF → DMeff
− sending X to M(X) = C∗Ztr(X). This category

contains M(Gq
m) = C∗Ztr(G

q
m), and Z(q), which is built out of this. Then, looking at the first

“bare hands” construction of motivic cohomology and using the above theorems17, we have:

Proposition 12.3. The motivic cohomology groupsHp(X;Z(q)) are equal to [M(X);Z(q)[p]]DMeff
−

.

There is also a variant of motivic cohomology called compactly supported cohomology. This is
defined by:

16Voevodsky: cohomological theory of presheaves with transfer.
17as well as a comparison of Exti calculated in chain complexes over ShNis(SmF ) versus over ShNis(CorrF )
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Definition 12.4 (compactly supported motivic cohomology).

Hp
c (X;Z(q)) := [M c(X);Z(q)[p]]DMeff

−

What is Mc(X)? This should be something like “compactly supported correspondences into
X”. If X is proper, we have M c(X) = M(X).

In general, we need the following definition:

Definition 12.5. The group of quasi-finite correspondences18 Corrq.f.F (X, Y ) is the set of Z-linear
combinations of closed sub-varieties Z ⊆ X × Y such that the projection to X is quasi-finite and
dominant onto an irreducible component of X .

These do not form a category, but Corrq.f.F (X, Y ) is still functorial in X ∈ CorrF . This lets us
define:

Definition 12.6. M c(Y ) = C∗(Corrq.f.F (−, Y )) ∈ DMeff
− .

Proposition 12.7. If Y is a compactification of Y , (i.e. Y is a proper F -scheme and Y ↪−→ Y is
an open immersion), then M c(Y ) is isomorphic to the cone of M(Y \ Y )→M(Y ).

The definitions given above work to defineM(X),M c(X) and thereforeHp(X;Z(q)), Hp
c (X;Z(q))

for any scheme X of finite type over F (i.e. not necessarily smooth over F ). However, some proper-
ties of these groups only hold if we assume that resolution of singularities holds over F : therefore,
they work when F has characteristic 0 but perhaps they do not in general.

For some purposes, it is convenient to work in a smaller category than DMeff
− . We define:

Definition 12.8. DMeff
gm, the “derived category of geometric motives” is the “thick subcategory” of

DMeff
− generated by M(X) for X ∈ SmF . This is the smallest full subcategory of DMeff

− closed
under:

• Retracts: i.e. if F = F0 ⊕F1 and F ∈ DMeff
gm, then F0,F1 ∈ DMeff

gm.

• The shift functor A 7→ A[i] for i ∈ Z

• Mapping cones: if f : A → B is a morphism with A,B ∈ DMeff
gm, then the mapping cone

C(f) is in DMeff
gm. i.e. this is some object C such that there is a distinguished triangle

A
f
// B // C // A[1] // · · ·

Proposition 12.9. If F has resolution of singularities, then for any finite type scheme X over
SpecF , M(X),M c(X) are in DMeff

gm.

There is a tensor product on DM− making it into a symmetric monoidal category19. We have:
M(X) ⊗M(Y ) := M(X × Y ). Given F ∈ ShNis(CorrF ), we may canonically resolve F by
representable sheaves as:

F
⊕

Ztr(X)→F Ztr(X)oo · · ·oo

18the notation Corrq.f. is not standard
19and a so-called “tensor triangulated category”. The word “triangulated” has to do with taking mapping cones of

maps of chain complexes.

33



This allows us to “linearly extend” the definition of the tensor product from representable objects
M(X) ' Ztr(X) to all sheaves. Given some A ∈ DMeff

− , the functor −⊗A : DMeff
− → DMeff

− may
have an adjoint Hom(A,−). However, for arbitrary A, the relevant complex may not be bounded
above.

Proposition 12.10. Hom(A,−) exists whenever A ∈ DMeff
gm.

In particular, we may define A(1) := A⊗ Z(1) for any A ∈ DMeff
= .

We have the following crucial theorem:

Theorem 12.11 (Cancellation theorem). The functorA 7→ A(1) is full and faithful, i.e. [A,B]DMeff
−

∼−→
[A(1), B(1)]DMeff

−
.

Proof. The original proof assumed resolution of singularities, but Voevodsky later found a proof
which works in any characteristic. See [20].

If there were some object Z(−1) such that Z(1) ⊗ Z(−1) ' Z = Z(0), this theorem would
be entirely unsurprising. However, this object does not exist in DMeff

− . We construct the category
DM− by “formally inverting” the functor −⊗ Z(1), and define inside this the category DMgm as
before. This will be a “rigid tensor category”. (An analogy in topology is the passage from pointed
spaces to spectra, where one formally inverts smash products with S1, after which all finite CW
complexes become dualizable. In this case the analogue of the cancellation theorem is far from true:
there is a big difference between maps X → Y and maps S1 ∧X → S1 ∧ Y .)

13 2/7/18
Last time, we discussed an embedding of CorrF into the category of chain complexes of con-
travariant functors from CorrF to Ab, i.e. the category PST. This embedding is enriched over
(Ab,⊗), meaning that both categories have a natural structure of additive tensor categories, and
the embedding respects this structure. We furthermore need to formally invert “weak equivalences”
given by the “homotopies” Ztr(X ×A1)→ Ztr(X).

Now, we may carry out a parallel version of this story working over the category SmF of smooth
F -schemes. We have the Yoneda embedding of this category into the presheaf category Psh(SmF ),
as well as the canonical map from SmF to the “simplicialization” sSmF := Fun(∆op, SmF ). Thus,
the Yoneda embedding induces an embedding sSmF → sFun(Smop

F ,Sets) = Fun(Smop
F , sSets).

Just as before, we need to “localize” this category by forcing weak equivalences to be isomor-
phisms. We have:

Definition 13.1. Given a morphism f : A• → B• of simplicial sets, we say that f is a weak
equivalence if |A•| → |B•| induces isomorphisms on π0 and on πi(−, a) for every i > 0 and
every a ∈ A0. In other words, a weak equivalence is a homotopy equivalence on the geometric
realizations.

In the category Fun(Smop
F , sSets), we want to invert stalkwise weak equivalences. Recall

that if J is a filtered category and j 7→ A(j) is a functor from J to sSet, then we have natural
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isomorphisms:

lim−→
j

(
π0A(j)

) ∼−→ π0 lim−→
j

A(j), lim−→
j

πi
(
A(j), a

) ∼−→ πi

lim−→
j

A(j), a


for any a in the 0-skeleton of A.

Given a functor F : Smop
F → sSets and x ∈ X ∈ SmF , the Nisnevich stalk at x is the colimit in

sSets of F (U) over the filtered category of Nisnevich neighborhoods ofX Spec(k(x))→ U → X .
Then we may define:

Definition 13.2. A map F• → G• of simplicial presheaves on SmF is a weak equivalence if the
induced map on Nisnevich stalks for any x ∈ X ∈ SmF is a weak equivalence in the category of
simplicial sets.

Example 13.3. Let F ∈ sPSh(SmF ) be a simplicial presheaf on SmF , sending [p] ∈ ∆ to Fp.
Then the map Fp → (Fp)

∼
Nis between Fp and its sheafification as a set-valued presheaf is an

isomorphism on stalks. Thus, the condition of being a weak equivalence is not sensitive to whether
we work with simplicial sheaves or simplicial presheaves.

Morel and Voevodsky start with the category sShNis(SmF ); other authors start with the category
of simplicial presheaves sPShNis(SmF ). Both of these categories have the following properties:

• They have a notion of local equivalence. This notion satisfies the “2-out-of-3 property” if
f, g are composable morphisms, then if 2 out of 3 of f, g, f ◦ g are local equivalences, so is
the third.

• They have simplicial enrichments, i.e. the morphism sets Hom(F•,G•) are naturally the 0-
simplices in a simplicial set of morphisms (“mapping spaces”). This is because Hom(F•,G•) ⊆∏

X HomsSets(F (X),G (X)), where HomsSets denotes the simplicial set of morphisms in
the category of simplicial sets20. We shall write Hom(F ,G ) for the simplicial set of mor-
phisms from F to G , for emphasis.

However, we have a problem: the Hom simplicial sets are not homotopy invariant. That is,
if F

∼−→ F ′ and G
∼−→ G ′ are weak equivalences, it may not be the case that Hom(F ′,G ) →

Hom(F ,G ′) is a weak equivalence. This problem is familiar from homological algebra: the
formation of total Hom-complexes does not commute with quasi-isomorphisms. (This is the whole
reason why higher Ext groups exist).

To solve this problem, we use the notion of a model category. These were introduced by Quillen,
and the original paper [13] remains one of the best references. Another reference is [6].

Let C be a category and W a collection of morphisms (thought of as the set of “weak equiva-
lences”). Then, as long as W satisfies some natural conditions, we may construct a localization
C[W−1], a category with the same objects as C, together with a functor C → C[W−1] which is the
identity on objects. Furthermore, this functor is initial21 among functors out of C which send the

20the category of simplicial sets is enriched over itself
21strictly! (this is reasonable because we’re fixing the object set, and all functors are required to be the identity on

object sets)
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morphisms in W to isomorphisms. The Hom-sets in C[W−1] should be thought of as “RHom” or
“derived Hom”, but in fact end up naturally being π0 of “derived Hom spaces”.

We require some extra (but auxiliary) structure on C and W for this all to work. Namely, in
addition to W , we want two additional classes of morphisms of C, namely the set cof of cofibrations
and the set fib of fibrations. We require some axioms on C and these collections, in which case we
say that C with this extra data is a model category:

• C has all limits and colimits.

• W satisfies the “2 out of 3 property”, i.e. if two of f, g, f ◦ g are in W , so is the third.

• The sets W , cof, fib are closed under retracts.

• Given a diagram
A //

f

��

X

g

��

B

>>

// Y

such that f ∈ cof, g ∈ fib, and either f or g is in W , then there exists an arrow filling in the
dotted arrow and making the diagram commute.

• Given f : X → Y , there exists factorizations f = π1 ◦ i1 and f = π2 ◦ i2 with π1 ∈ W ∩ fib,
i1 ∈ cof and π2 ∈ fib, i2 ∈ W ∩ cof.

Example 13.4. If we let C = sSets, C admits the structure of a model category where the weak
equivalences are as defined above, the cofibrations A• → B• are level-wise injections, and the
fibrations are “Kan fibrations”. From this example, one may develop many others.

Example 13.5. If C is any small category, the category sPSh(C) = Fun(Cop, sSets) admits two
canonical structures with W consisting of object-wise weak equivalences. There is the injective
model structure, where cofibrations are object-wise cofibrations and fibrations are defined by the
lifting property (as in topology). Dually, there is the projective model structure, where fibrations are
object-wise fibrations and cofibrations are defined by the “co-lifting property” (as in topology).

Next time, we’ll briefly discuss the operation of Bousfield localization, which takes a model
category (C,W, cof, fib) and a collection W ′ ⊇ W of morphisms and produces a “universal” model
structure on C where W ′ is contained in the set of weak equivalences, the set of cofibrations is
unchanged, and there are fewer fibrations. However, this operation may not always work.

In the case of a simplicially enriched categoryC (e.g. categories of simplicial sheaves/presheaves),
we require a tiny bit more. First, a condition on the simplicial enrichment, that “powers and copow-
ers exist”, meaning the following. Let K be a simplicial set and X ∈ C an object. Then we require
that there is an object K ⊗X ∈ C which represents the functor sSet(K,C(X,−)). Dually, we
require that there is an object XK ∈ C which represents the functor sSet(K,C(−, X)). Then there
is a single compatibility requirement between the simplicial enrichment and the model category
structure:
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If L→ K is a cofibration of simplicial sets and X → Y is a cofibration in C, then we form the
pushout diagram:

L⊗X //

��

L⊗ Y

��

K ⊗X // Z

Thus, there is a unique map from Z to K ⊗ Y which is compatible with the natural maps K ⊗X →
K ⊗ Y and L⊗ Y → K ⊗ Y . We require that these maps be cofibrations.22

14 2/9/18
Last time, we discussed how to do “homological algebra” in a setting where one cannot add and
subtract maps, so there are no chain complexes and homologies to work with. Quillen’s proposal to
solve this is to use the structure of a model category. This is a piece of additional structure on a
category C consisting of three classes of morphisms: the “weak equivalences” W , the “cofibrations”
cof, and the “fibrations” fib. Various axioms are imposed on C and these classes. We recall some of
the most important ones. The first is the lifting and co-lifting axiom. Given a diagram in C:

A

f
��

// X

g

��

B //

>>

Y

The lifting axiom says that if g is a fibration and f is a cofibration and at least one of g, f is a weak
equivalence, then there exists a morphism filling in the dotted arrow.

Another important axiom is the factorization axiom: any map f : X → Y can be factored as a
cofibration followed by a fibration in two ways such that either the fibration or the cofibration is
additionally a weak equivalence. Some authors require these factorizations to be functorial in f .

The structure of a model category gives rise to some natural classes of objects: an object X is
called fibrant if the map to the terminal object is a fibration, and it is called cofibrant if the map
from the initial object is a cofibration. (C is assumed to have all limits and colimits).

These concepts also make sense in the setting where C is a simplicially enriched category, i.e.
when the Hom-sets Hom(X, Y ) have a functorial structure of simplicial sets. We require some
additional axioms on (C,W, cof, fib) to make the model structure compatible with this enrichment,
as discussed in the last lecture.

A particular example of the factorization axioms shows that objects admit fibrant and cofibrant
approximations. A cofibrant approximation to an object Y is a factorization of the initial map
∅ → Y as a cofibration ∅ → Y c followed by a fibration which is a weak equivalence Y c −�∼ Y .
Thus, this “approximates” Y by a cofibrant object Y c. Dually, a fibrant approximation to an object
X is a factorization of the terminal map X → {∗} as a cofibration which is a weak equivalence
X ↪−→∼ Xf followed by a fibration Xf −� {∗}. Thus, this “approximates” X by a fibrant object
Xf .

22Some “dual” properties about fibrations then follow from various adjunctions, cf e.g. Proposition 4.12 in [6]
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In the category of simplicial sets, the condition of an object being cofibrant is the vacuous
condition, and the condition of being fibrant says that the object is a “Kan Complex”, i.e. this says
exactly that the terminal map is a Kan fibration.

In this setting, we may define a derived Hom functor Cop × C → sSet. This sends (X, Y ) to
the simplicial Hom-set Hom(Xc, Y f ). This is like defining the Ext groups in an abelian category
via injective and projective resolutions. The axioms imply that this derived Hom functor respects
weak equivalences (so it sends weak equivalences in C to weak equivalences in sSet), which is not
true for the ordinary Hom functor.

Let us now briefly discuss Bousfield localization of simplicial model categories. Given a further
set of morphisms S ⊆ mor(C), we say that an object Y is S-local if Y is fibrant and for any
f : X → X ′ in S, the map Hom(f, Y ) : Hom(X ′, Y )→ Hom(X, Y ) is a weak equivalence.

If both X,X ′ are cofibrant, we say that f is a S-local equivalence if for any S-local object
Y , Hom(f, Y ) is a weak equivalence. Thus, if we perform a universal operation which forces
the morphisms in S to become weak equivalences, we must also do so for the class of S-local
equivalences.

There is an operation to do this, i.e. a universal way to change the model structure on C to
make the morphisms in S weak equivalences. This is called Bousfield localization, and exists under
certain hypotheses (some of which are set-theoretic in nature to avoid proper class problems). This
keeps the class of cofibrations unchanged, but shrinks the class of fibrations to the class of S-local
fibrations. We define these to be the fibrations f : X −� Y which satisfy the lifting property for
any cofibration which is also an S-local equivalence. This consists, for example, of all cofibrations
in S, so this is a more stringent condition on f than the ordinary lifting axiom.

Now, we return to the category sPSh(SmF ), the category of contravariant morphisms from the
category SmF to the category of simplicial sets. We recall the “official” definition of SmF : this
is the full category of the category of F -schemes whose objects are the finite-type smooth maps
X → SpecF . This is an essentially small category, i.e. there is a set of isomorphism classes of
objects.

We have the notion of “global” weak equivalences: if F ,G are simplicial presheaves, we say that
a morphism F → G is a global weak equivalence iff for every object X ∈ SmF , F (X)→ G (X)
is a weak equivalence of simplicial sets. This extends to a model structure, where the cofibrations
consist exactly of monomorphisms, and the fibrations are defined as those morphisms satisfying the
lifting axiom.23

We can perform a Bousfield localization on this category to force Nisnevich-local weak equiva-
lences - i.e. morphisms such that the induced map on every Nisnevich stalk is a weak equivalence -
to be weak equivalences. This leads to the notion of Nisnevich descent:

Definition 14.1. We say that a sheaf F satisfies Nisnevich descent if for any open immersion
U ↪−→ X and any étale map f : V → X which is an isomorphism over X \ U , then if we apply F
to the “elementary distinguished square”:

U ×X V

��

// V

f
��

U // X

23this uses only that SmF is essentially small: for any small category C it was proved in [13] that one can construct a
model category structure on functors C → sSets in this way.
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we get a homotopy cartesian square24:

F (X) //

��

F (V )

��

F (U) //F (U ×X V )

We should think of these as approximately being the fibrant sheaves after we Bousfield-localize
the Nisnevich-local weak equivalences. This isn’t exactly true, but we have the following lemma,
found in [?mv]:

Lemma 14.2. If F has Nisnevich descent, then for any objectX , the fibrant replacement F → F f

induces maps
F (X)

∼−→ F f (X)

which are weak equivalences in sSet. (In other words, F → F f is a global equivalence.)

As a final step, we need to localize this category even further, so our sheaves are “A1-homotopy
invariant”. In other words, we Bousfield localize at the set S of projection maps X ×A1 → X for
every X ∈ SmF (thought of as representable presheaves). After this, for any fibrant F , the map
F (X)→ F (X ×A1) will be a weak equivalence of simplicial sets for any X .

This construction gives us the unstable category of motivic spaces SpcA
1

F . This is a model
category whose underlying category is the category of simplicial presheaves on SmF , the weak
equivalences are the Nisnevich-local A1-homotopy equivalences, the cofibrations are the monomor-
phisms, and the class of fibrations is induced by the rest of the data.

The terminal object, thought of as the “one-point set” is the representable presheaf associated to
SpecF . The “basepointed” version of SpcA

1

F is just the “under category” for the terminal object, or
in other words functors from SmF to pointed simplicial sets (a.k.a. simplicial sets with a chosen
0-simplex). Let us denote the basepointed category by SpcA

1

∗ . There are two notions of “circle”
in this category. The first is the “simplicial circle” S1

s , represented by S1 = ∆[1]/δ∆[1], where
∆[1] is the simplicial set sending [p] ∈ ∆ to ∆([p], 1). (More precisely, it is the constant presheaf
which sends any smooth scheme to that simplicial set.) The basepoint in the simplicial circle (i.e.
the collapsed δ∆[1]) gives a map from the terminal object to S1

s , making it an object in the pointed
category. It turns out that this is equivalent to the simplicial presheaf represented by the “node”
A1/0, 1, i.e. the pushout of the diagram:

{0, 1} //

��

A1 ' {∗}

��{∗} //

There is also the “Tate circle”, which si the representable presheaf represented by Gm =
SpecF [t±1]. This is also “pointed”, with distinguished point given by 1 ∈ Gm.

Next, we want to “calculate” the homotopy type of P1. This is A1 “glued to” A1 along Gm,
with one map Gm → A1 given by t 7→ t and the other map Gm → A1 given by t 7→ t−1. A1 is

24this means essentially that the induced map of homotopy fibers is a homotopy equivalence
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homotopy equivalent to a point, and Gm is the pointed object S1
t . We may define smash products

of pointed objects (F , x : SpecF → F ) and (G , y : Spec F → G ), simply as object-wise smash
product of pointed simplicial sets, and it turns out that we always have a homotopy pushout diagram:

F //

��

{∗}

��

{∗} // S1
s ∧F .

Thus, we have:
P1 ' S1

s ∧ S1
t .

15 2/12/18
We will continue discussing the category C = sPSh(SmF ) of simplicial presheaves on the category
of smooth F -schemes, together with its model structure. The class of weak equivalences, denoted
W , consists of the A1-local weak equivalences, and with associated fibrations and cofibrations. An
important idea to keep in mind is that the main “homotopy theoretic” data is specified by (C,W ),
and the fibrations and cofibrations are more of an auxiliary technical tool: thus, any meaningful
construction should only really depend on (C,W ), at least up to weak equivalence.

For example, the derived Hom is given by RHom(F ,G ) = Hom(F c,G f ) ∈ sSet, so it
appears to depend crucially on which objects are fibrant and cofibrant. However, there is another25

way of formulating this derived Hom which agrees with this up to weak equivalence and which is
constructed only depending on (C,W ).

One may discuss pushouts in the category of presheaves. These are given by object-wise
pushouts. There are also homotopy pushouts, which map to the object-wise pushouts. Given a
diagram of the form:

F01
//

��

F1

F0

We may obtain the homotopy pushout by replacing F01 → F1 by a weakly equivalent cofibra-
tion, and then taking the object-wise pushout.26 The map from the homotopy pushout to the pushout
is a weak equivalence if one of the legs is a cofibration.

Example 15.1. Consider a Zariski open subset U ↪−→ X and an étale map V → X which is an
isomorphism over X \ U . Then we get a fiber diagram27:

U ×X V //

��

V

��

U // X

25see e.g. Dwyer–Kan: Calculating simplicial localizations
26For a general model category, we need to replace both maps by cofibrations, but under a minor technical condition

which is satisfied in our setting, only one is necessary. (The technical condition is that the model category is left proper.)
27this kind of square is often called an “elementary distinguished square”
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Both horizontal arrows are Zariski open immersions. Thus, the associated maps of simplicial
presheaves are monomorphisms and therefore cofibrations. The canonical map from the homotopy
pushout to the actual pushout in (simplicial) presheaves is therefore an equivalence. The actual
pushout is not representable, but the induced map to the presheaf represented byX is an isomorphism
on stalks (this is a statement about S-valued points, for S a Henselian local ring). Hence the diagram
is “homotopy cartesian” (which is just a name for the induced map from homotopy pushout to X
being a weak equivalence).

We may also construct Thom spaces. First, we recall the situation in topology. Let V → X
be a vector bundle. We may define the Thom space Th(V ) = DV/S(V ), where DV and S(V )
are the associated disk and sphere bundles respectively (this depends on the choice of a metric on
V ). Note that the inclusion D(V ) ↪−→ V is a homotopy equivalence over X , as is the inclusion
SV ↪−→ V − X . One way of rephrasing the definition of Th(V ) is that it is a pushout of the
following diagram28:

S(V ) //

��

D(V )

��

pt // Th(V )

By applying the homotopy equivalences S(V )
∼−→ V −X and DV ∼−→ V , we see that this is the

homotopy pushout of:
V −X //

��

V

��

pt // Th(V )

(In topology, the map V −X ↪−→ V is not a cofibration, and the actual pushout here would not
be well-behaved, e.g. most likely not Hausdorff.)

Now, to mimic this construction in algebraic geometry, we let X ∈ SmF be a smooth scheme
over F and let V → X be a vector bundle over X , thought of as the total space. If X =
SpecR is affine and V is the vector bundle associated to the locally free R-module M , V =
Spec(SymR(M∨)).

Then, the Thom space ThX(V ) is the pushout in the category sPSh(SmF ) of the diagram:

V −X //

��

V

��

{∗} // ThX(V )

Since V − X → V is the inclusion of a Zariski open, the top horizontal map is an injection on
represented presheaves, hence a cofibration, so the Thom space is equivalent to the homotopy
pushout.

One of the reasons Thom spaces are useful in topology is the Pontryagin-Thom construction.
We let Md ↪−→ Rn+d be a compact smooth d-dimensional submanifold. Then we may embed the
normal bundle νM into Rn+d as a tubular neighborhood.

28this is the actual pushout, but the top horizontal map is a cofibration so it is equivalent to the homotopy pushout
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Then we have a map ϕ : Sn+d ' Rn+d∪{∞} to Th(νM) = D(νM)/S(νM), the “Pontryagin–
Thom collapse map”. This may be regarded as a universal fundamental class for M , in the following
sense. If we consider [π] ∈ πn+dTh(νM), we may apply the Hurewicz map to send this to a class in
relative homology Hn+d(Th(νM), ∗), where ∗ denotes the basepoint in the Thom space. We have a
Thom isomorphism Hn+d(Th(νM), ∗) ' Hd(M ; Z̃), where Z̃ denotes the local coefficient system
associated to the orientation character w1(νM) : π1(M) → Z× for the normal bundle, which in
general may be non-orientable. The resulting homology class is a fundamental class [M ], so in
this sense the class [π], or even the map π may be regarded as a homotopical enhancement of the
fundamental class. It is quite canonical, for example the embedding Md ↪−→ Rn+d exists and is
unique up to isotopy, provided n� d.

Of course, most of those words (tubular neighborhood, etc) don’t make sense in algebraic
geometry, but nevertheless we have the following remarkable replacement.

Theorem 15.2 (Morel-Voevodsky). If Z ⊆ X ∈ SmF is a closed subvariety, then we have an
isomorphism:

Th(NX,Z) ' X/(X \ Z)

This isomorphism takes place in the A1-local homotopy category, but comes from a particular
“zig-zag” of A1-local weak equivalences in C = SpdA1

∗ .

Proof. We recall the construction of the normal bundle in algebraic geometry. The closed embedding
Z ↪−→ X is specified by an ideal sheaf I ↪−→ OX , and the normal bundle is the sheaf on Z given
by (I /I 2)∨|Z , which is locally free under our assumptions.

Of course, there is nothing like a tubular neighborhood theorem in algebraic geometry, but we
may geometrically realize the normal bundle via a blowup construction called “deformation to the
normal cone”.29 We consider the blowup BlZ×{0}(X ×A1). We have a pullback diagram:

E //

��

BlZ×{0}(X ×A1)

��

Z × {0} // X ×A1

There is an isomorphism P(NX,Z ⊕ OZ) ' E. There is an open immersion NX,Z ↪−→ P(NX,Z ⊕
OZ) determined by [x] 7→ [(x, 1)]. There is a complementary closed embedding P(NX,Z) ↪−→
P(NX,Z ⊕ OZ) defined by [x] 7→ [(x, 0)].

Now, the map Z ×A1 ↪−→ X ×A1 canonically factors through BlZ×{0}(X ×A1) (this follows
from the universal property of the blowup, since Z × {0} is an effective Cartier divisor in Z ×A1).
This restricts to a canonical inclusion of Z × {0} into E ⊆ BlZ×{0}(X ×A1).

Now define D = BlZ×{0}(X ×A1) \ BlZ(X) and let t : D → A1 be the projection onto the
A1 factor. We have t−1(0) ' NX,Z , and Z × {0} maps into this as the 0-section. We also have
t−1(1) ' X , and Z × {1} maps into Z under this identification.

Now, both ThZ(NX,Z) = NX,Z/(NX,Z −Z) and X/(X \Z) map into D/(D− (Z×A1)). We
claim that these are both weak equivalences, which is proved in three steps.

The first step is to consider the case that X = Z ×Ad, and Z ↪−→ X is given by the 0-section
Z × {0} ↪−→ Z ×Ad. Then it is easy to see the isomorphism Th(NX,Z) ' X/(X − Z), since

29See §25 in [?ravi] for a more thorough discussion, and [5] for a comprehensive treatment.
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we may identify NX,Z with Z × Ad ' X , and one may moreover verify30 that both maps to
D/(D − (Z ×A1)) are weak equivalences.

The second step, which is the most interesting step, is to prove the claim under the assumption
that there exists a pullback diagram of the form:

Z
q|Z
//

��

An−c × {0}

��

X
q

//An

With q, and hence q|Z , étale. From this, we get a diagram:

X ×An (Z ×Ac) //

��

Z ×Ac

q|Z×id

��

Z ×An−c Z

66

((

X
q

//An = An−c ×Ac

Z

OO

q|Z
//An−c × {0}

OO

Here, the vertical maps in the top square are both étale, and the two squares are Cartesian. The
diagonal ∆ ⊂ Z ×An−c Z is of course closed, but since q|Z is étale it is also open. Hence
Z ×An−c Z ' ∆ t U with ∆ the diagonal and U its complement. Then we have closed subspaces
U ⊂ Z ×An−c Z ⊂ X ×An (Z ×AC), so the complement V = X ×An (Z ×AC)−U is (Zariski)
open in X ×An (Z ×AC). After removing it, the complement ∆ maps to Z by an isomorphism, so
we have constructed an elementary distinguished square:

W //

��

V = X ×An (Z ×AC)− U

��

X − Z // X.

Since we saw that elementary distinguishes squares are homotopy pushouts, we have weak
equivalences:

V/(V −W )
∼−→ X/(X − Z)

and
V/(V −W )

∼−→ Z ×Ac/(Z × (Ac \ {0}))

Now, we may apply the first step to this last quotient to get the desired zig-zag of weak equivalences.
The third step is to use that Zariski-locally, any smooth pair Z ↪−→ X admits a pullback diagram

with (q, q|Z), and use a gluing argument.
30we skipped this in class though
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16 2/14/18
Last time, we discussed Thom spaces. We proved that if Z ⊆ X is a closed immersion with Z,X ∈
SmF , then X/(X − Z) and Th(NX,Z) = NX,Z/(NX,Z − Z) are weakly equivalent. That allows us
to define a “Pongtryagin-Thom construction”, i.e. a “collapse map”X → X/(X−Z) ' Th(NX,Z).
To prove this weak equivalence, we proceeded as follows:

1. Define the “zig-zag” of morphisms via the deformation to the normal cone.

2. Settle the case X = Z ×Ad.

3. Settle the case where X is étale over Ad and Z is the pullback of X to Ad−c × {0}.

4. Use the following fact: if X,Z are smooth varieties and x ∈ X , then there is a Zariski open
neighborhood U 3 x with (U,U ∩ Z) as in the previous step.

Next, we will discuss Eilenberg-Mac Lane spaces K(Z(i), j) ∈ SpcA
1

. These are simplicial
presheaves such that for any X ∈ SmF , we have:

[X,K(Z(i), j)] := π0RHom(X,K(Z(i), j)) ' Hj(X;Z(i))

Here, this isomorphism takes place in the homotopy category of simplicial presheaves with
A1-local weak equivalences.

Now, what is the relationship between simplicial presheaves with Nisnevich local equivalence
and sheaf cohomology? For any X, Y , we have:

[X, Y ] = π0Hom(X, Y f )

This is because every object is already cofibrant (since the map from the initial object is always a
monomorphism).

We say that F• ∈ sPSh(SmF ) has Nisnevich descent if for any elementary distinguished square

U ×X V //

��

V

��

U // X

then the following square is also homotopy Cartesian:

F (X) //

��

F (V )

��

F (U) //F (U ×X V )

If F satisfies this property, then F (X) → F f (X) is a weak equivalence for any X . This
means that Hom(X,F ) ' Hom(X,F f ) =: RHom(X,F ).

Now, let A : Smop
F → Ab be a Nisnevich sheaf. We may compose A with the forgetful map

Ab→ Set and the embedding Set→ sSet to get a simplicial presheaf. Because A is a Nisnevich
sheaf, it automatically has Nisnevich descent. Thus, we have:

[X,A ] ' A (X) = H0(X,A )
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Here, the last group is Zariski (or Nisnevich) sheaf cohomology on X . This gives the first rela-
tionship between homotopy theory of simplicial presheaves with Nisnevich local equivalences and
sheaf cohomology.

Now, let A be an abelian group and n ∈ N. We will define K(A, n) ' B · · ·BA = BnA =
DK(A[n]). Here, B is the “classifying space” functor, which takes topological abelian groups to
topological abelian groups, and hence may be iterated. DK is the Dold-Kan functor, giving an
equivalence of categories31 between N-graded chain complexes Ch(Ab) and sAb.

We may apply this construction object-wise to get the simplicial presheaf BA : Smop
F → sSets.

This satisfies

πi(BA (X)) =

{
A (X) i = 1

0 else

and similarly for BA .
However, this simplicial presheaf will not satisfy descent in general. Consider the following

homotopy Cartesian square:
U ×X V //

��

V

��

U // X

This gives a diagram:
BA (X) //

��

BA (V )

��

BA (U) // BA (U ×X V )

The condition of this square being homotopy Cartesian is (at least morally) equivalent to the
existence of a long exact “Mayer-Vietoris” sequence:

πk(BA )(X) // πk(BA )(U)⊕ πk(BA )(V ) // πkBA (U ×X V ) // πk−1(BA )(X) // · · ·

This would give us a short exact sequence:

0 // A (X) // A (U)⊕A (V ) // A (U ×X V ) // 0

However, this sequence need not be right exact, since higher cohomology H1(X,A ) might inter-
vene. However, if the fibrant replacement BA → (BA )f would happen to have π0(BA )f (X)
equal to H1(X; A ), this might fix the problems if the long-exact sequence in homotopy groups
became replaced with something continuing as the Mayer–Vietoris sequence. Hence we guess that
the more generally the map

(BnA )(X)→ (BnA )f (X)

should defines an isomorphism on π≥n, and have πn−i(BnA )f (X) ' H i(X; A ). This is indeed
the case, as we shall now explain by constructing an explicit model.

We pick an injective resolution A → I •. Passing to Nisnevich stalks gives a quasi-isomorphism
from A concentrated in degree 0 to the complex:

0 // I 0 // I 1 // I 2 // · · · // I n−1 // ker(I n → I n+1) // 0

31on the nose! Not just “homotopically”
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The Dold-Kan functor takes this to a Nisnevich local equivalence of simplicial presheaves from
BnA to BnA , defined to be the Dold-Kan image of the truncated injective resolution.

Since homotopy groups of the Dold–Kan construction is homology of the chain complexes, we
get πn−i(BnA )(X)) = H i

Nis(X; A ) by the definition of sheaf cohomology in terms of injective
resolutions.

Lemma 16.1. BnA has Nisnevich descent.

We may prove this using the Mayer-Vietoris long exact sequence.
Since BnA has Nisnevich descent, BnA → (BnA )f is an object-wise weak equivalence. This

means that:

[X,BnA ] := π0RHom(X,BnA )

= π0Hom(X; (BnA )f )

= π0Hom(X;BnA )

= π0(BnA )(X) = Hn(X; A ),

so we have in fact constructed a “representing object” for sheaf cohomology (at least for sheaves
defined on the all of SmF ).

The same idea works for A•, a chain complex of simplicial presheaves, with hypercohomology
replacing cohomology. One performs the same construction level-wise and then takes a total
complex.

Now, we have:

H i(X : Z(j)) = H i
Nis(X;C∗Ztr(Gm, 1)j[−j]) = [X;Z(j)[i]]

Here, Z(j)[i] = BiZ(j). This follows from the above discussion: however, the last set refers
to homotopy classes of maps of simplicial presheaves after inverting just Nisnevich local weak
equivalences. We have said nothing at all about A1-homotopy!

However, the same (difficult) argument that shows that H i(−;Z(j)) is homotopy invariant
shows that the formation of Z(j)[i] is A1-local. This uses the fact that Z(j) is actually a presheaf
with transfers.

17 2/16/18
Last time we saw that Nisnevich cohomology of a smooth scheme X with coefficients in a sheaf
A is representable by a (fibrant) simplicial presheaf BnA . As a corollary we can define, for any
X ∈ sPSh(SmF ) (not necessarily representable!)

Hn(X; A ) = [X,BnA ]Ho(sPSh(SmF ) ' [X t {∗}, BnA ]Ho(sPSh∗(SmF ))

It is sometimes convenient to work with the category of pointed simplicial presheaves sPSh∗(SmF ).
There is a natural forgetful functor U from this category to the category of simplicial presheaves,
and a functor from sPSh(SmF ) to sPSh∗(SmF ) sending a simplicial presheaf X to X t {∗}.
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For X ∈ sPSh∗, we may define reduced cohomology (i.e. “cohomology relative to the base-
point”)

H̃n(X; A ) = [X,BnA ]Ho(sPSh∗) = [S1
s ∧X,Bn+1A ] ' H̃n+1(X ∧ S1

s ; A )

The sequence of sheaves BnA has the structure of a “Ω-spectrum”, as there is a canonical
Nisnevich local weak equivalence BnA

∼−→ Ω1
sB

n+1A , where Ω1
s denotes the loop space with

respect to the simplicial circle S1
s (this is just a fancy way to express taking object-wise loop spaces).

This is the structure which we really used to define cohomology with coefficients in A , and it works
at this level of generality:

Given any sequence E consisting of fibrant En in sPSh∗(SmF ) and weak equivalences En
∼−→

ΩsEn+1, we could define Hn(X;E) = [X,En]Ho(sPSh∗). The condition of being an “Ω spectrum”
in this sense gives this set of homotopy classes the structure of an abelian group.

Now, so far, we have not really done anything “motivic”, since we have not dealt with A1-
homotopy invariance. To force the Hn(X; A ) to satisfy Nisnevich descent, we were able to use
the fibrant replacement construction. We want a similar construction which forces A1-homotopy
invariance. The natural candidate for this is to replace a simplicial presheaf F with Sing(F ), the
simplicial presheaf defined by:

X 7→ ([p] 7→ Fp(X ×∆p))

We called this construction C∗A when we were talking about chain complexes of abelian sheaves
A .

Unfortunately, the constructions of replacing F by F f and of replacing F by Sing(F ) are not
compatible, in the sense that Sing(F )f may not be A1-homotopy invariant and that Sing(F f ) may
not satisfy Nisnevich descent. We can try to force this to happen by taking the sequence:

F• → F f
• → Sing(F f

• )→
(

Sing(F f )
)f
→ · · ·

Every other object in this sequence satisfies Nisnevich descent, and the remaining objects (apart
from the original F ) are A1-homotopy invariant. It turns out that this means the (filtered) colimit is
an A1-homotopy invariant simplicial presheaf with Nisnevich descent.

This uses a particular property of the Nisnevich topology which is not true for arbitrary
Grothendieck topologies, namely that the covering axiom can be checked via finite diagrams -
namely, elementary distinguished squares. Then for a particular elementary distinguished square
of objects of SmF , the condition of a presheaf F satisfying Nisnevich descent for this square is
preserved under filtered colimit.

If you are familiar with constructing fibrant replacements in model categories, this construction
might not seem so baroque as it otherwise might: often, one has to repeat a construction some big
infinite cardinal number of times in order to make things work in this setting.

Now, the notation [X,F ] meaning homotopy classes of maps from X to F , depends on what
the weak equivalences are in the category: there is a canonical map [X,F ]Nis → [X,F ]Nis+A1 , but
there is no particular reason to expect it to be an isomorphism.

However, for motivic cohomology, something amazing happens:

Theorem 17.1. If F is a homotopy invariant presheaf with transfers, then F∼
Nis and H i

Nis(−,F∼
Nis)

are automatically A1-homotopy invariant.
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If F• is a chain complex in the category ShNis(CorrF ) of Nisnevich sheaves with transfers, then
C∗F has A1-homotopy invariant cohomology presheaves X 7→ Hi((C∗F )(X))∼Nis. A spectral
sequence argument shows that this implies that X 7→ H i(X;C∗F ) is also A1-homotopy invariant.

18 2/21/18
Let us say a bit more about the “Eilenberg-Mac Lane spaces” representing motivic cohomology in the
model category SpcA

1

∗ , which has as its underlying category the category sPSh(SmF ) of simplicial
presheaves on SmF and as its weak equivalences the A1-Nisnevich-local weak equivalences. The
associated homotopy category is called the motivic homotopy category. We’ve developed a general
recipe for A1-localization, by giving an “explicit” fibrant replacement involving an infinite process.

Previously, we developed a parallel story in the abelian world. We included SmF into the
additive category CorrF , and then looked at the category Fun(Corrop

F ,Ch). Then by localizing the
Nisnevich-local quasi-isomorphisms, we obtained the derived category D(ShNis(CorrF )). From
this, we built DMeff

− , the full subcategory with homotopy invariant homology presheaves. There
is a functor C∗ from D(ShNis(CorrF )) to DMeff

− , and we used a non-trivial result to show that this
preserves the Nisnevich sheaf property, so we did not need an infinite process.

We can relate these two constructions via the functor32 Γ sending a Nisnevich sheaf of chain
complexes A∗ to ΓA∗ ∈ sPSh(SmF ). This functor Γ is defined by truncating A∗ at 0 and then
using the Dold-Kan correspondence (giving an equivalence of categories between N-graded chain
complexes and simplicial objects in an abelian category). This construction is compatible with the
weak equivalences, so it gives a functor on homotopy categories:

Γ: D(ShNis(CorrF ))→ Ho(sPSh(SmF ))

In particular, this functor restricts to a functor on the subcategory DMeff
− .

We have:
H0

Nis(X; A•) = [X,ΓA•]Ho(SpcA
1
∗ )

= π0RHom(X,ΓA•)

More generally, we have:
πiRHom(X,ΓA•) = H−iNis(X; A•)

When A• ∈ DMeff
− , so it has homotopy-invariant homology presheaves (and hence homol-

ogy sheaves, by [17]), we get an isomorphism Hn(X; A•)
∼−→ Hn(X ×A1; A•), and the above

discussion shows that this means that (ΓA•)f ∈ SpcA
1

is A1-local.
Letting M(X) be the object in DMeff

− associated to the representable sheaf on CorrF determined
by X , we have:

H0
Nis(X; A•) = [M(X),A•]DMeff

−
' [X, (ΓA•)]Ho(SpcA

1
)

This means that X 7→ [M(X), A]DMeff
−

is also representable in Ho(SpcA
1

).
Recall the definition of Z(i) = Σ−iC∗Ztr((Gm, 1)∧i) ∈ DMeff

− . The above discussion shows
that ΣjZ(i) represents Hj(−;Z(i)). Thus, in sPSh(SmF ), we have:

K(Z(i), j) = Γ
(

Σj−iZtr(Gm, 1)∧i
)

32we didn’t use this notation last time, but the relationship is BnA = Γ(A [n])
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As before, the fact that cohomology is representable allows us to define cohomology for any
X ∈ sPSh(SmF ) as:

H i(X;Z(j)) = [X,K(Z(j), i)]
Ho(SpcA

1
)

In particular, we can do this for X = K(Z(i), j) itself. We see that:

H i′(K(Z(j), i),Z(j′)) = [K(Z(j), i), K(Z(j′), i′)]
Ho(SpcA

1
)

Since K(Z(j), i) represents the cohomology functor, this is also the same thing as the set of natural
transformations from the functor H i(−,Z(j)) to H i′(−,Z(j′)) as functors from SpcA

1

to Set.
So far, the discussion has been fairly formal. Now, we will turn to some more serious results.

Let A,B ∈ DMeff
− . Then we have a functor A 7→ A⊗ Z(1). We have:

Theorem 18.1 (Cancellation Theorem). For any A,B ∈ DMeff
− , the functor −⊗ Z(1) induces an

isomorphism:
[A,B]DMeff

−

∼−→ [A⊗ Z(1), B ⊗ Z(1)]DMeff
−

The shift ΣZ(1) is given by C∗Ztr(Gm, 1) = M(Gm, 1) = cok(M(pt) → M(Gm)). This
(Gm, 1) gives an object S1

t ∈ SpcA
1

∗ . More generally, given a smooth variety X with a basepoint x,
we may define M(X, x) similarly as the cokernel of the map M(pt)→M(X) defined by x.

Clearly the shift functor is fully faithful as well, so tensoring with ΣZ(1) = M(S1
t ) is also fully

faithful.
Then the cancellation theorem leads to suspension isomorphisms in motivic cohomology:

H̃ i(X;Z(j)) = [M(X, x),ΣiZ(j)]DMeff
−

∼−→ H̃ i+1(S1
t ∧X;Z(j + 1))

We also have a suspension isomorphism in the “simplicial direction”, using the simplicial circle
S1
s = ∆[1]/(∂∆[1]), i.e. the constant simplicial presheaf with value given by the simplicial set

∆[1]/(∂∆[1]). We get:
H̃ i(X;Z(j))

∼−→ H̃ i+1(S1
s ∧X;Z(j))

On the level of representing objects, we may state these as weak equivalences

K(Z(j), i)
∼−→ Ω1

sK(Z(j), i+ 1)

and
K(Z(j), i)

∼−→ Ω1
tK(Z(j + 1), i+ 1)

in the category SpcA
1

∗ of pointed simplicial presheaves, with A1 Nisnevich local weak equivalences.
Here, Ω1

s denotes the loop space with respect to S1
s , in other words just the object-wise loop space

of simplicial presheaves, and Ω1
t the pointed mapping space from S1

t
33

This allows us to define the motivic stable category, which is supposed to be like a category of
spectra. This consists of collections of fibrant objects En ∈ SpcA

1

• for n ∈ Z equipped with maps:

En
∼−→ Ω1

sΩ
1
tEn+1

Note that since S1
s ∧ S1

t ' (P1,∞), the right hand side is pointed maps from (P1,∞) to En+1.
33by definition, this is right adjoint (in the actual categories, not just in homotopy categories) to the smash product

with S1
t . Strictly speaking we should have written K(Z(j), i + 1)f before taking these loop spaces, but we shall tacitly

redefine the notation K(Z(j), i) to mean something fibrant, weakly equivalent to what we defined before
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19 2/23/18
We will introduce the notation Hp,q(X;A) for the motivic cohomology group Hp(X;Z(q)⊗ZA) =
Hp(X;A(q)). Last time, we discussed that motivic cohomology is representable:

Hp(X;A(q)) = [X+, K(A(q), p)]
Ho(SpcA

1
∗ )

Here, X+ = X t {+}, the pointed scheme formed by adding a disjoint basepoint to X . Also,
if X ∈ SpcA

1

∗ , we can extend the definition of motivic cohomology by letting H̃p,q(X,A) =
[X,K(A(q), p)]. (The tilde denotes that this is “cohomology relative to the basepoint”: if X comes
from a smooth scheme with a basepoint map Spec(F ) → X , then Hp,q(X) ∼= Hp,q(Spec(F )) ⊕
H̃p,q(X).)

We also discussed the suspension isomorphisms, which follow from the cancellation theorem.
We have isomorphisms:

Hp,q(X;A)
∼−→ Hp+1,q(S1

s ∧X;A), Hp,q(X;A)
∼−→ Hp+1,q+1(S1

t ∧X;A)

Here, S1
t = (Gm, 1) = ΣZ(1) is the “Tate circle” and S1

s is the “simplicial circle”.
In topology, there is only one circle S1, and only the first index is meaningful, so the suspension

isomorphism takes the form:

H̃p(X;F`)
∼−→ H̃p+1(S1 ∧X;F`)

Here, ` is a prime number.
In topology, at least when ` is an odd prime, we have reduced power operations denoted:

Pa : Hn(X;F`)→ Hn+2a(`−1)(X; F`)

These commute with the suspension isomorphisms, so they are “stable” cohomology operations.
Another stable cohomology operation is the Bockstein homomorphism β : Hn(X; F`) →

Hn+1(X; F`). These operations generate the Steenrod algebra A` of all stable cohomology
operations. This is an algebra over the ring H∗(pt; F`) = F`.

We have an F` basis given by:

PI = βε0P i1 · · · βεn−1P inβεn

for εi ∈ {0, 1}, ia ∈ N, and ia ≥ `ia+1 + εa. We include P0 = id in this set. We can describe the
multiplication in A` via the Adem relations:

PaPb =
∑

(· · · )P iPj

whenever a < ` · b. Here, all i, j considered will satisfy i ≥ `j. There is a corresponding relation
giving a formula for PaβPb when a ≤ `b.

Now, we may mimic the construction of A` to define the motivic Steenrod algebra A mot
` for

` 6= char(F ) as the algebra of cohomology operations θp,q : Hp,q(−;F`)→ Hp+a,q+b(−;F`) which
commute with both suspension isomorphisms. Such operations are called bi-stable. It turns out that
the structure of this algebra as an algebra over the ring H∗,∗(Spec(F );F`) is essentially the same as
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in topology. However, this ring is much more complicated than F`: for example, we have seen that
Hp,p(Spec(F ),F`) = KM

p (F )/`.
The reduced powers are operations:

Pa : Hp,q(X,F`)→ Hp+2a(`−1),q+a(`−1)(X;F`)

and the Bockstein homomorphisms are operations:

β : Hp,q → Hp+1,q

We also define Ba := βPa. Now, we have:

Proposition 19.1. If ` 6= char(F ) and ` 6= 2, then the same Adem relations hold in the motivic
Steenrod algebra as in the ordinary Steenrod algebra. When ` = 2, some small modification is
needed.

In topology, when ` = 2, the reduced powers are often denoted differently: we have Pa = Sq2a

and βPa = Sq2a+1. In general, the constructions of the reduced powers come from the fact that the
cup product is graded commutative on C∗(X; F`) up to homotopy, but not on the nose. Voevodsky’s
construction ([18]) in the motivic setting follows a similar principle. We will discuss a construction
of these operations in topology which is formally very analogous to Voevodsky’s.

In a particular case, the total power operation P =
∑∞

a=0Pa will be an element of the
cohomology group H∗,∗(K(F`(p), 2p);F`), giving a natural transformation H2p,p(−;F`)→ H∗,∗.
Voevodsky uses a particular model for the Eilenberg-Mac Lane space K(F`(p), 2p), and constructs
an “`-th power map” K(F`(p), 2p)× BS` → K(F`(p`), 2p`).

Now, K(Z(i), j) corresponds under the Dold-Kan functor Γ to the object

Ztr((Gm, 1)∧i)[j − i] = M(Gm, 1)[j − i]

Recalling that (Gm, 1) = S1
t and that P1 ' S1

s ∧ S1
t ' A1/(A1 \ {0}). (The first of these weak

equivalences is derived from P1 being the pushout of A1 ← Gm → A1.) Using this, we may see
that:

K(Z(p), 2p) ' C∗(Ztr(A
p)/Ztr(A

p \ {0}))
This is analogous to the construction of the Dold-Thom model for K(Z, n) in topology. This

is the free topological abelian group generated by Sn = Rn ∪ {∞}. We think of a map f : X →
K(Z, n) as sending f(x) to a Z-linear combination of points in Rn, so this is like a correspondence
from X to Rn. Thus, we may think of K(Z, n) as a “labeled configuration space”: this consists of
finite sets of points in Rn, each of which are labeled by integers, and we require that when points
collide, we add their labels. This works similarly if the Z coefficients are replaced by F`.

The cup product gives a map K(Z, n) ∧ K(Z,m) → K(Z, n + m): given labeled points
{ai · xi} with xi ∈ Rn and {bi · yi} with yi ∈ Rm, the product is the set {aibi · (xi, yi)} with
(xi, yi) ∈ Rn+m = Rn ×Rm. However, this operation is not commutative, since the first factor
determines the first n coordinates and the second factor determines the last m coordinates. On the
other hand, there is a natural action of the symmetric group Sn+m on K(Z, n + m), and the cup
product is commutative after taking a quotient by this action.

To get the `-th power maps, we take the diagonal embedding K(F`, 2n)→ K(F`, 2n) ∧ · · · ∧
K(F`, 2n), with ` factors on the right hand side. This sends

∑
i aixi to

∑
i1,...,i`

(ai1 · · · ai`)(xi1 , . . . , xi`).
Since S` acts on the right-hand side, we get a map K(F`, 2n)× BS` → K(F`, 2`n).
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Now, we have the following fact in group cohomology: if G` ⊆ G is a Sylow `-subgroup, then
the restriction map H∗(G;F`)→ H∗(G`;F`) is injective. (This is because the composition of this
map with the transfer or co-restriction map is multiplication by (G : G`), which is prime to `). Thus,
we have:

H∗(BS`;F`) ↪−→ H∗(BC`;F`)
Aut(C`) = F`[u, v]

Here, v = βu, and C` is the cyclic group of order `. This follows from the factorization:

F×` n F`

��

F` = C`

88

// S`

20 2/26/18
Let ` be an odd prime number, S` the symmetric group on ` letters, and BS` its classifying space.
When defining Steenrod operations, one essentially must compute H∗(S`;F`) = H∗(BS`;F`). We
may consider the cyclic group of order ` as (F`,+) embedded as the subgroup {( 1 ∗

1 ) ⊆ GL2(F`).
This sits inside the larger subgroup {( ∗ ∗1 )}, which is isomorphic to F×` n F` and acts on F` × {1}.
This defines an inclusion F` ⊆ F×` nF` ⊆ S`, where F` is the Sylow `-subgroup of S` and F×` nF`

is its normalizer.
Now, we have a restriction map i∗ : H∗(BS`;F`)→ H∗(BF`;F`) and a transfer/corestriction

map tr : H∗(BF`;F`)→ H∗(BS`;F`). Their composition is multiplication by (S` : F`) = (`−1)!,
which may be thought of as an element in F×` . Thus, the restriction map is injective.

We may identify the cohomologyH∗(BF`;F`) with F`[u, βu] with the element u ∈ H1(BF`;F`) '
Hom(F`,F`) corresponding to the identity map. The Bockstein homomorphism β takesH1(BF`,F`)
to H2(BF`,F`). We may identify βu as the Euler class e(V ) for the vector bundle V → BF`

corresponding to the map F` → GL1(C) ⊆ GL2(R) sending 1 to e2πi/`. We can see that there is a
basis for H i(BF`;F`) consisting of (βu)i and u(βu)i−1.

The Serre spectral sequence associated to the fibration BF` → B(F×` n F`)→ BF×` leads to
an additive isomorphism H∗(B(F×` n F`);F`) ' H∗(BF`;F`)

F×` . We can compute the action of
F×` on H∗(BF`;F`) explicitly: ζ ∈ F×` acts as ζ i on (βu)i and u(βu)i=1. Now, since ζ i = 1 for all
ζ ∈ F×` iff (` − 1) | i, the fixed points are spanned by (βu)(`−1)i and u(βu)(`−1)i−1. Note that β
takes the latter to the former.

Now, there is a general theorem in group cohomology that says if the Sylow `-subgroup G`

of a group G is abelian, then H∗(G;F`)
∼−→ H∗(NG(G`);F`). 34 Thus, we have an isomorphism

H∗(B(F×` n F`);F`) = F`[v, (βv)], with v = u(βu)`−2 ∈ H2`−3(F×` n F`);F`).
Now, we may identify the class βv as the Euler class e(ρ), where ρ is the vector bundle on BS`

associated to the reduced regular representation: i.e. the quotient of the permutation representation
ρ : S` → GL`(C) by the span of (1, 1, · · · , 1), i.e. the trivial sub-representation. Note that
ζ|F`

= L1 ⊕ · · · ⊕ L`−1 is the sum of all of the different characters of the additive group of F`.
Now, all this gives us:

Corollary 20.1. For any topological space X , H∗(X × BS`;F`) = H∗(X)[v, βv].

34Sometimes called “Swan’s theorem”, see e.g. [1, Exercise 2.6] or [4, Corollary 5.7.4]
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We return to the discussion of Eilenberg-Mac Lane spaces. Recall that we thought of K(F`, 2n)
as the free topological F`-vector space on S2n via the Dold-Thom theorem. We can think of this as a
labeled configuration space of points

∑
i aixi with ai ∈ F` and xi ∈ S2n = R2n∪{∞}. We realized

the cup product mapK(F`, 2n)×K(F`, 2m)→ K(F`, 2(n+m)) defined by (
∑

i aixi,
∑

j bjyj) 7→∑
i,j(aibj)(xi, yj).
Now, we have a natural transformation in cohomology from H2n(−;F`) to H2n(X`)× · · · ×

H2n(X`) with ` copies by sending x to

(x⊗ 1⊗ · · · ⊗ 1, 1⊗ x⊗ 1⊗ · · · ⊗ 1, · · · , 1⊗ · · · ⊗ 1⊗ x)

Multiplying gives x⊗· · ·⊗x ∈ H2`n(X`) and pulling back to the diagonal gives x` ∈ H2n`(X;F`).
We may think of x as a map X → K(F`, 2n). We have a diagram:

X` (x,x,··· ,x)
// K(F`, 2n)× · · · ×K(F`, 2n)

^

��

X x` //

∆

OO

K(F`, 2n`)

This diagram commutes “on the nose”. Now, both spaces on the top row have an S` action defined
by permuting the factors, and the space K(F`, 2n`) has an action of S` induced from the action on
S2n`, thought of as (Cn⊕ · · · ⊕Cn)∪ {∞}. The maps are equivariant “on the nose”, but the action
on K(F`, 2n`) is non-trivial on the point-set level. We will now apply a homotopy quotient. This is
done by the Borel construction: to take a homotopy quotient of a space Y by the action of a group
G, we take the product Y × EG and consider the diagonal action of G. This is a free action, so
we may take a well-behaved quotient. Here, EG is the universal cover of BG and is a contractible
space with a free action of G.

We have a diagram:

(ES` ×X` ×K(F`, 2n`))/S`

��

BS` ×X

55

// (ES` ×X`)/S` //

s

JJ

BS`

Here, the map s is like a “twisted cocycle”: a section of a bundle of pointed spaces with fibers
K(F`, 2n`). (The point being that a section of a trivial(ized) bundle is just a map, so this is “like a
map” to K(F`, 2n`).) The bundle is pulled back from a bundle over BS`. The diagonal map is just
obtained by composing the left-most horizontal map (coming from the diagonal of X) with s. The
section s itself comes from the map X` → K(F`, 2n`) in the previous diagram.

In general, if E → B is a fiber bundle with fiber K(F`,m) such that π1(B) acts on K(F`,m)
via a map π1(B)→ GLm(R) and the action of GLm(R) on Sm, then it is trivial whenever π1(B)
acts by orientation preserving maps (for some choice of basepoint b ∈ B) on the associated vector
bundle. This is the case when m = 2n is even and the action comes from GLn(C) ⊆ GLm(R).

The trivialization comes from a map f : E → K(F`,m) corresponding to an element of
Hm(E;F`). The Serre spectral sequence gives a map fromH∗(B;Hm(K(F`,m);F`))→ H∗+m(E;F`),
and we can look at the image of the Thom class. This map f induces an isomorphism on
π−1(b) ' K(F`,m), so we get the desired trivialization (f, π) : E

∼−→ K(F`,m) × B. With
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respect to this trivialization, the section s becomes just a map BS` × X → K(F`, 2n`), so it
represents a cohomology class.

In the motivic setting, the role of BF` is played by Bµ`, with µ` the group scheme of `-th roots
of unity. The difference does not matter when the field F contains all the `-th roots of unity (since
then µ` ' F`). Otherwise, many of the arguments are similar, except for the last bit with the Thom
class.

21 2/28/18
Last time we discussed a construction of the “total power operation” K(F`, 2n) × BS` →
K(F`, 2n`) in topology. At a crucial step, it used Thom isomorphism for vector bundles to
trivialize a certain fibration. Let us briefly discuss how Thom isomorphism works in the motivic
setting.

In the motivic setting, there is a projective bundle formula. If V → X is a d-dimensional vector
bundle and PV → X is its projectivization, we have:

M(P(V )) 'M(X)⊕M(X)(1)⊕ · · · ⊕M(X)(d− 1)

This means that H∗,∗ is a free module over H∗,∗(X) on generators 1, c, . . . , cd−1 for c =
[θ(1)] ∈ H2,1(P(V )). In the case V is a trivial bundle, this shows that H∗,∗(Pn) is a free module
over H∗,∗(SpecF ). This lets us define the Thom class λV via the sequence:

P(V )→ P(V ⊕ O)→ Th(V )

We define λV to be the class which maps to 1cd +
∑d−1

i=0 aic
i, and note that this uniquely defines

ai ∈ H∗,∗(X). Indeed, the map in motivic cohomology induced by P(V ) → P(V ⊕ O) sends
1, c, . . . , cd−1 ∈ H∗,∗(P(V ⊕ O)) to a basis for H∗,∗(P(V )) as a module over H∗,∗(X). Hence the
last basis vector cd may be adjusted to a basis vector λV for the kernel which is then free of rank
one over H∗,∗(X).

What about classifying spaces? Given a group scheme G, we naturally get a functor of points
Smop

F → Groups, and we can define BG to be its “sheafification” (or fibrant replacement) in the
Nisnevich or étale site.

Some specific group schemes appearing include Gm = GL1. This is Spec(F [t, t−1]) with
multiplication given by t 7→ t⊗t. This admits a map fromG = µ`. This is given by Spec(F [t]/(t`−
1)), and is the kernel of the `-th power map. The other group scheme appearing is G = S` =
tS`

Spec(F ), which is a constant group scheme.
There is also a geometric construction of classifying spaces. Assume that ρ : G ↪−→ GLn is

a faithful representation ρ : G ↪−→ GLn. For each N , we may consider the embedding of GLn,
and hence of G, into GLnN , which sends a matrix g to the block diagonal matrix consisting of N
copies of g. This defines a linear action of G on AnN . This action is not free, but we may consider
the maximal Zariski open subset VN on which G acts freely. It is a theorem that lim−→N→∞ VN is
A1-contractible. At least when G is sufficiently nice, the quotient VN → VN/G exists and is a
principal G-bundle. Thus, it makes sense to define:

Bgm(G) = lim−→
N→∞

(VN/G)
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This is isomorphic to the étale sheafification of the functor of points given by BG. Up to A1-
homotopy equivalence, this construction is independent of ρ.

Example 21.1. Let G = Gm and ρ the identity map Gm → Gm = GL1. This acts diagonally on
AN , and the action is free exactly on AN \ {0}, with quotient PN−1. This gives us:

BgmGm = P∞F := lim−→
N

PN
F

This shows us that H∗,∗(BGm) ' H∗,∗(F )[[c]] with c ∈ H2,1.

We may also take the one-dimensional representation of µ` determined by the canonical inclusion
into Gm. This acts diagonally and freely on An \ {0}. There is a fibration of An \ {0}/µ` → PN−1.
This is isomorphic to the complement of the 0 section O(−`) \PN−1 → PN−1. Now, if V → X is
any vector bundle, it is actually a A1-homotopy equivalence, because locally it is the product of X
with a contractible affine space.

The cofiber of the map O(−`) \ PN−1 → PN−1 is the Thom space ThPN−1(O(−`)). The
Thom isomorphism says that cupping with the Thom class λO(−`) gives an isomorphism from
H∗,∗(PN−1) to H̃∗,∗(Th(O(−`))). The inclusion of PN−1 as the zero section gives a pullback map
H̃∗,∗(Th(O(−`))), and just as in topology we can define the Euler class e(O(−`)) ∈ H∗,∗(PN−1)
to be the class determined by the pullback of the Thom class. This is ±` · c where c = [O(1)] ∈
H2,1(PN−1) is the class generating the cohomology. This class is thus trivial in H∗,∗(−;Z/`).

Thus, we have an exact sequence:

0→ H∗,∗(SpecF ;Z/`)[[c]]→ H∗,∗(Bµ`;Z/`)→ H∗,∗(SpecF ;Z/`)[[c]]→ 0

The addive structure on cohomology may be deduced from this, and with a bit more work
Voevodsky also determines the multiplicative structure:

H∗,∗(X × Bµ`;Z/`) = H∗,∗(X;Z/`)[[u, v]]/ ∼

where v is the Euler class of µ` ⊆ Gm and u is a certain class with v = βu. Here, ∼ means
that u2 = 0 if ` is odd and u2 = τv + ρu when ` = 2. We define ρ as the class corresponding
to `(−1) ∈ KM

1 (SpecF )/2 = H1,1(Spec(F );Z/2), and τ ∈ H0,1(Spec(F );Z/2) = µ2(F )
corresponds to −1 ∈ µ2(F ). Here, we require that ` 6= char(F ), as usual. These classes τ and ρ
appear in many formulas in motivic cohomology at the prime ` = 2.

For S`, we use the reduced regular representation ρ. We consider e(ρ) ∈ H2`−2,`−1(BS`;Z) and
take its image d under the map toH2`−2,`−1(BS`;Z/`). THen, there is a unique c ∈ H2`−3,`−1(BS`;Z/`)
with d = βc. Then we have a map H∗,∗(X;Z/`)[[c, d]]→ H∗,∗(X × BS`;Z/`).

22 3/2/18
(Executive summary by SG.)

(Discussed an isomorphism H∗,∗(X;Z/`)[[c, d]]/ ∼→ H∗,∗(X × BS`;Z/`) and how the con-
struction of the total power operation carries over to the motivic setting. At a certain point it is
important to use the Thom isomorphism to untwist a “twisted cocycle”, similarly to the topological
case.)

(After this, I discussed some constructions and results from Milnor’s paper “On the Steenrod
algebra and its dual” [9].)
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23 3/5/18
Last time, we discussed the Steenrod algebra A , which can be written asH∗,∗(pt;F`)〈βε0P s1βε1 · · ·P skβεk〉
with si ≥ ` · si+1 + εi. We call these generators “admissible”, and they form a basis as a module
over H∗,∗(pt;F`). The products of P and β in other orders can be written as linear combinations of
the admissible generators, just as in topology. (For ` > 2 it’s exactly as in topology, for ` = 2 there
are correction terms involving the special elements ρ and τ from the presentation of the cohomology
ring of Bµ`.)

There is a coproduct ψ : A → A ⊗H∗,∗(pt) A , and this encodes a formula for θ(uv) with θ ∈ A
in terms of Steenrod operations on u, v. We define particular classes ξi, τi ∈ HomH∗,∗(pt)(A , H∗,∗(pt)) =
A ∨. From the action of A on H∗,∗(Bµ`;Z/`) ' H∗,∗(pt)〈vi, uvi | i ≥ 0〉. Here, u ∈ H1,1, and
v = βu ∈ H2,1. We define ξi and τi by requiring that for θ ∈ A , we have:

θ(v) =
∞∑
i=0

〈ξi, θ〉v`
i

, θ(u) = 〈ξ0, θ〉+
∞∑
i=0

〈τi, θ〉v`
i

For ` > 2, A ∨ is a free graded commutative H∗,∗(pt)-algebra on τ0, τ1, . . . , ξ1, ξ2, . . .. We have
ξi ∈ A ∨

2(`i−1),`i−1 and τi ∈ A ∨
2`i−1,`i−1.

At ` = 2, a similar statement is true except for the fact that we have the relation τ 2
i =

τξi+1 + ρ(τi+1 + τ0ξi+1). Here, `(−1) = ρ ∈ H1,1(pt) = K1
M(F ). However, this is still free as a

module on the monomials.
The proofs of this freeness result for the dual is surprisingly easy. In the topological case, it

is proved by Milnor in [9], and the motivic proof is analogous. We first verify that the number of
candidate basis elements for the dual gives the correct dimension in each bi-degree. The somewhat
strange-looking requirement for a monomial in the β, P to be admissible can be rewritten by defining
ri = si − ` · si+1 + εi, and then the requirement says that ri ≥ 0. We have sn =

∑∞
i=n(εi + ri)`

i−n,
so the εi, ri determine the si. We calculate that the degree of a monomial βε0P s1βε1 · · ·P skβεk is:

ε0 +
∑
j

(εj + 2(`− 1)sj) = ε0 +
∞∑
i=1

(εi(2`
i − 1) + ri(2`

i − 2))

Here, εi ∈ {0, 1} and ri ∈ N. Now, for I = (ε0, r1, ε1, · · · , rk, εk) a tuple of indices with εi ∈ {0, 1}
and ri ∈ N, we define θ(I) as the monomial in the β, P with these indices. This is a basis vector
in A ∗,∗. We also define ω(I) =

∏∞
i=0 τ

εi
i

∏∞
i=1 ξ

ri
i ∈ A ∨. Our degree calculation shows that the

bi-degree of ω(I) is equal to the bi-degree of θ(I). Then we can calculate that:

〈θ(I), ω(J)〉 =


±1 I = J

0 I < J

? I > J

Here, ” > ” means with respect to the lexicographic order. This means that the change of basis
matrix in A ∨ from the dual basis of the θ(I) to the basis consisting of the ω(J) is upper triangular
with ±1 on the diagonal, so it is invertible and therefore the ω(I) ∈ A ∨ form a basis over H∗,∗(pt).

The existence of this basis for the dual gives an alternative basis for A as a (left) H∗,∗(pt)-
module consisting of the dual basis to ω(I). In particular, we have elements Qk called “Milnor
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primitives” which are dual to the τk, and live in A 2`k−1,`k−1. For E = (ε0, . . . , εk) and R =
(r1, . . . , rk), we define ρ(E,R) ∈ A .

In terms of this basis, we may compute the coproduct on A ∨ by:

ξk 7→
k∑
i=0

ξ`
i

k−i ⊗ ξi, τk 7→ τk ⊗ 1 +
k∑
i=0

ξ`
i

k−i ⊗ τi

This implies that Q2
k = 0 in A , and they generate an exterior sub-algebra of A . We call them

primitive because Qk(xy) = (Qkx) · y± x(Qky) - this is true for any ` in topology and for ` > 2 in
the motivic theory. We also have Q0 = β : H∗,∗ → H∗+1,∗.

This leads to something called “Margolis homology”, which we shall explain shortly. Let us
first discuss a special case called “Bockstein homology”, associated to Q0 = β, and start with the
situation in topology. This is defined by

βHn(X;Z/`) := ker(β : Hn(X)→ Hn+1)/ im(β : Hn−1 → Hn)

This construction may look a little bit artificial, as it does not look like a typical cohomology
theory. (Unlike for example singular cohomology or topological K-theory, it is not representable
by a space.) It arises as the E2 page of the Bockstein spectral sequence. This arises from an
attempt to understand H∗(X;Z`) in terms of H∗(X;Z/`) together with the endomorphism β. Here,
H∗(X;Z`) will be of the form

⊕
Z` ⊕

⊕
Z`/`

ni . The Z` summands show up as single Z/`
summands in H∗(X;Z/`), while each Z`/`

n summands show up as a pair of Z/` summands in
H∗(X;Z/`). For n = 1 these are connected by a non-zero Bockstein homomorphism, and for
n > 1 they are connected by “higher Bocksteins”. A better way to say this is via the Bockstein
spectral sequence. We have an exact couple given by:

H∗(X;Z`)
` // H∗(X;Z`)

ρ
ww

H∗(X;Z/`)

β

gg

This leads to a spectral sequence in the standard way, and we see that Z/`n torsion in H∗(X;Z`)
comes from non-zero dn differentials in the Bockstein spectral sequence. We may think of this
construction as coming from the two maps Z` → F` and Z` → Q`, plus the action of ` on Z`.

In topology, there is an analogous construction with non-trivial grading. This comes from
the ring F`[vn] with |vn| = 2(`n − 1) together with the projection map to F` and the localization
map to F`[vn, v

−1
n ]. We have F`[vn] = π∗k(n) with k(n) the ring spectrum of “connective Morava

k-theory”, which has an endomorphism given by multiplication by vn. The ring F`[vn, v
−1
n ] is

π∗K(n), with K(n) the ring spectrum for (periodic) Morava K-theory. (For some purposes this
behaves a bit like the complete DVR Z`: the “residue field” is still F`, the “fraction field” is K(n),
and vn is a “uniformizer”.) There is again an exact couple:

k(n)∗(X)
vn // k(n)∗(X)

d1=Qkww

H∗(X;Z/`)

gg
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This gives us a spectral sequence analogous to the Bockstein spectral sequence, whoseE2 page is the
Margolis homology MH∗(X) := ker(Qk)/ im(Qk), converging (probably under some finiteness
assumptions) to Morava K-theory of X . Notice that it is much easier to define Margolis homology
on its own (one only needs to construct Qk and prove Q2

k = 0) than to construct Morava K-theory
and the spectral sequence.

Apparently an early preprint version of Voevodsky’s paper used a “motivic Morava K-theory”,
but later versions got away with only defining “motivic Margolis homology”.

References
[1] Alejandro Adem, Lectures on the cohomology of finite groups, Contemporary Mathematics 436 (2007), 317.

[2] J. K. Arason and A. Pfister, Beweis des Krullschen Durchsnittsatzes für den Wittring, Invent. Math. 12 (1971),
173–176.

[3] Alexander A Beilinson, Height pairing between algebraic cycles, K-theory, Arithmetic and Geometry, 1987,
pp. 1–26.

[4] David J and Smith Benson Stephen D, Classifying spaces of sporadic groups, American Mathematical Soc., 2008.

[5] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A
Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998.

[6] Paul Goerss and Kristen Schemmerhorn, Model categories and simplicial methods, Contemp. Math., vol. 436,
Amer. Math. Soc., Providence, RI, 2007.

[7] Lars Hesselholt, Norm maps in Milnor K-theory, available at https://www.math.nagoya-u.ac.jp/
˜larsh/teaching/F2005_917/. Course Notes from Fall 2005 course at MIT.

[8] Stephen Lichtenbaum, Values of zeta-functions at non-negative integers, Number Theory Noordwijkerhout 1983,
1984, pp. 127–138.

[9] John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR0099653

[10] D. Orlov, A. Vishik, and V. Voevodsky, An exact sequence for KM
∗ /2 with applications to quadratic forms, Ann.

of Math. (2) 165 (2007), no. 1, 1–13.

[11] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel, Lecture notes on motivic cohomology, Clay Mathematics
Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge,
MA, 2006.

[12] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1969/1970), 318–344.

[13] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New
York, 1967.

[14] Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients,
NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117–189.

[15] The Stacks Project Authors, Stacks Project, 2018.

[16] John Tate, Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257–274.

[17] Vladimir Voevodsky, Cohomological theory of presheaves with transfers, Ann. of Math. Stud., vol. 143, Princeton
Univ. Press, Princeton, NJ, 2000.

[18] , Reduced power operations in motivic cohomology, Publications Mathématiques de l’Institut des Hautes
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