Theorem 0.1 (Poincare). There exists a closed 3-manifold \(M \) which is not simply connected, but which has \(H_k(M) \cong H_k(S^3) \) for all \(k \).

Proof. Let \(A_5 \subseteq \Sigma_5 \) be the alternating group. We will use without proof that \(A_5 \) is simple. We will also use without proof that \(SO(3) \) is homeomorphic to \(RP^3 \). Include \(A_5 \subseteq SO(3) \) as the isometries of an icosahedron, and let \(M = (SO(3))/A_5 \). Since the projection \(SO(3) \to M \) is a covering map and hence a local homeomorphism, \(M \) is again a closed 3-manifold.

The universal cover of \(M \) is \(S^3 \). Let \(G = \pi_1(M) \). Then \(G \) acts on \(S^3 \) through deck transformations. Deck transformations of \(S^3 \to RP^3 \) gives a subgroup \(\{ \pm 1 \} < G \), and the quotient is \(G/\{ \pm 1 \} = A_5 \).

Lemma 0.2. \(M \) is orientable.

Proof. \(SO(3) \cong RP^3 \) is orientable. We will show that the action of \(A_5 \) on \(SO(3) \) preserves orientation; then it follows that \(M \) inherits an orientation from \(SO(3) \). We get a group homomorphism \(\epsilon : A_5 \to \mathbb{Z}/2 \) where \(\epsilon(g) = 1 \) iff \(g : SO(3) \to SO(3) \) reverses orientation. If \(M \) were not orientable, \(\epsilon \) would be surjective. This contradicts the fact that \(A_5 \) is simple. \(\square \)

This proves that \(H_3(M) = \mathbb{Z} = H_3(S^3) \). It remains to see that \(H_1(M) = H_2(M) = 0 \). Let \(G' = [G,G] < G \) be the commutator subgroup. It maps onto the commutator subgroup of \(A_5 \) which is \(A_5 \), so \(|G : G'| \) is either 1 or 2.

Lemma 0.3. \(|G : G'| = 1 \).

Proof. Suppose it were 2. Then the composition \(\{ \pm 1 \} \to G \to G/G' \) would be an isomorphism. By Hurewicz' theorem, the covering map \(RP^3 \to M \) would then induce an isomorphism \(\mathbb{Z}/2 = H_1(RP^3) \to H_1(RP^3) = \mathbb{Z}/2 \) and hence by the universal coefficient theorem we get an isomorphism \(\mathbb{Z}/2 = H^1(RP^3) \to H^1(RP^3) = \mathbb{Z}/2 \) and by Poincare duality an isomorphism \(H_2(RP^3) \to H_2(M) \).

This implies that the induced map

\[
H^*(M; \mathbb{F}_2) \to H^*(RP^3; \mathbb{F}_2) = \mathbb{F}_2
\]

is an isomorphism in degrees \(\leq 2 \). Since the cup product \(H^1(M; \mathbb{F}_2) \times H^2(M; \mathbb{F}_2) \to H^3(M; \mathbb{F}_2) = \mathbb{F}_2 \) is non-degenerate, (0.1) is also an isomorphism in degree 3. By the universal coefficient theorem, this implies that the induced map in integral cohomology

\[
\mathbb{Z} = H^3(M) \to H^3(RP^3) = \mathbb{Z}
\]

is multiplication by an odd number. But it follows from Exercise 3.3.9 in Hatcher that (0.2) is multiplication by 60 = \(|A_5| \).

Therefore we get \(H_1(M) = G/G' = 0 \) by Hurewicz, and then \(H_2(M) = 0 \) by universal coefficient theorem and Poincare duality. \(\square \)