Notation: If C is a category and x, y are two objects of C, we shall write $C(x, y)$ for the set of morphisms from x to y. (Another common notations is $\text{Mor}_C(x, y)$ or just $\text{Mor}(x, y)$.)

Notation: If C is an object and x is an object, we shall write either 1_x or id_x for the identity morphism of x.

Definition: Let C be a category. A morphism $f \in C(x, y)$ is called an isomorphism if there exists a morphism $g \in C(y, x)$ such that $f \circ g = 1_y$ and $g \circ f = 1_x$.

Two objects x and y are called isomorphic if $C(x, y)$ contains an isomorphism.

1. Prove that if $F : C \to D$ is a functor and $f \in C(x, y)$ is an isomorphism, then $F(x) \in D(F(x), F(y))$ is also an isomorphism. (“Functors send isomorphisms to isomorphisms”.)

2. Let C denote the category of topological spaces and continuous maps. Prove that there exists a category D with the following properties: (i) $\text{Ob}(C)$ is the collection of all topological spaces; (ii) $C(X, Y) = [X, Y]$ (i.e. the set of homotopy classes of maps) for all spaces X, Y; (ii) there is a functor $F : C \to D$ given on objects by $F(X) = X$ and on morphisms by $F(f) = [f]$ (i.e. it sends a map to its equivalence class modulo homotopy).

3. Let C and D be the categories from the previous exercise (D is sometimes called “the homotopy category”, although that name is also sometimes used about a slightly different category). Prove that two spaces X and Y are homotopy equivalent if and only if $F(X)$ and $F(Y)$ are isomorphic objects in D.

Remark: The “if and only if” part of this exercise shows that the functor F above is in some sense the “strongest possible” homotopy invariant of a space. This is of course a rather useless invariant, because it is no easier to determine whether $F(X)$ and $F(Y)$ are isomorphic than to determine whether $X \simeq Y$ in the first place. (This example shows that we shouldn’t be looking for the strongest possible invariant: neither π_1 nor the invariants defined later in this class are as strong as the functor F from this exercise, but they are much more useful.)