1. (i) For any CW complex X the cellular chains, and hence homology, of $X^{(k)}$ vanishes in degrees $> k$. The cellular chains of $X^{(k)}$ agrees with those of X in degrees $\leq k$. Therefore in degrees $< k$, they have the same groups of cycles and boundaries, and hence the same (reduced) homology.

Now, Δ^p is contractible so $\tilde{H}_i(\Delta^p) = 0$ for all i, and hence $\tilde{H}_i((\Delta^p)^{(k)}) = 0$ for $i \neq k$.

(ii) Let c_k denote the rank of the augmented cellular chain group $C_k(\Delta^p)$, and let r_k denote the rank of the linear map $\partial_k : C_k(\Delta^p) \to C_{k-1}(\Delta^p)$. Then the group of boundaries $B_k = \Im(\partial_{k+1})$ has rank r_{k+1}, and the group of cycles Z_k has rank $c_k - r_k$. Since $\tilde{H}_i(\Delta^p) = 0$, we get the equation

$$r_{k+1} = c_k - r_k$$

which together with $r_0 = 1$ (the augmentation) uniquely determines the numbers r_k as a function of c_k.

If S has cardinality $k + 1$, then $f_S : \Delta^k \to \Delta^p$ is the attaching map of a cell of dimension k. Hence the number of k-cells is

$$c_k = \binom{p + 1}{k + 1}.$$

By induction on (0.1) we see that $r_k = \binom{p}{k}$: this is true for $k = 0$ and the induction step is

$$\binom{p}{k + 1} = \binom{p + 1}{k + 1} - \binom{p}{k},$$

which is true by “Pascal’s triangle”.

(iii) $H_n((\Delta^p)^{(n)})$ is the group of cycles $Z_n \subseteq C_n$. Since Z_n is a subgroup of a free abelian group, it is itself a free abelian group. Its rank is

$$c_n - r_n = r_{n+1} = \binom{p}{n + 1}.$$

2. (i) Let \textbf{Top}_* denote the category of based topological spaces and based maps. Naturality of ϕ means that if $f : (X, x_0) \to (Y, y_0)$ is a based map, then

$$\phi \circ f_\# = f_* \circ \phi : \pi_1(X, x_0) \to H_1(Y).$$

This is true because both maps send the homotopy class of a loop $\lambda : (\Delta^1, \partial\Delta^1) \to (X, x_0)$ to the homology class of $f \circ \lambda$.
(ii) First assume \(T : \pi_1 \to H_1 \) is a natural transformation. Let \(* \in S^1 \) be a basepoint and regard \(\pi_1(X, x_0) = [(S^1, *), (X, x_0)] \). Let \(\iota \in \pi_1(S^1, *) \) be element represented by the identity map. Then \(T(\iota) \in H_1(S^1) = \mathbb{Z} \), so \(T(\iota) = n\phi(\iota) \) for a unique \(n \in \mathbb{Z} \).

Then for any \([f] \in \pi_1(X, x_0)\) we have \([f] = f_#(\iota)\) and naturality of \(\phi \) demands
\[
T([f]) = T \circ f_#(\iota) = f_*(T(\iota)) = f_*(n\phi(\iota)) = nf_*(\phi(\iota)) = n\phi \circ f_#(\iota) = n\phi([f]).
\]

So any natural transformation \(T : \pi_1 \to H_1 \) must be an integer multiple of \(\phi \). On the other hand it is clear that all these work: For any \(n \in \mathbb{Z} \), the definition \(T_n : \pi_1(X, x_0) \to H_1(X) \)
\[
[f] \mapsto nf
\]
gives a natural transformation of functors from \(\text{Top}_\bullet \) to groups.

(iii) For \(n \geq 2 \) we have \(H_n(S^1) = 0 \), so any natural transformation \(T : \pi_1 \to H_n \) must have \(T(\iota) = 0 \). Proceeding as in (ii) we now get \(T([f]) = f_*(T(\iota)) = 0 \) for all \([f] \in \pi_1(X, x_0)\), so the only natural transformation is the one that sends all elements to 0.

For \(n = 0 \) we have \(H_0(S^1) = \mathbb{Z} \). The generator is the class \([c]\) of the constant map \(c \) to the basepoint. Hence a natural transformation \(T : \pi_1 \to H_0 \) must have \(T(\iota) = n[c] \). For any \([f] \in \pi_1(X, x_0)\) we therefore get \(T([f]) = f_*(T(\iota)) = f_*(n[c]) = nf_*(c) \). In particular \(T([f]) \in H_0(X) \) is independent of \([f] \in \pi_1(X, x_0)\).

Considering again \(X = S^1 \), \(T \) gives a constant map \(\pi_1(S^1, *) \to H_0(S^1) \). The only constant homomorphism \(\mathbb{Z} \to \mathbb{Z} \) is the zero map, so \(T(\iota) = 0 \), and hence \(n = 0 \) so also in this case the only natural transformation is the one that gives the zero map for all spaces.

3.

(i) We can use
\[
\cdots \to \Lambda \xrightarrow{2} \Lambda \xrightarrow{2} \Lambda \to M \to 0
\]

(ii) We toss out \(M \) from the projective resolution and tensor with \(M \) and get a chain complex
\[
\cdots \to \Lambda \otimes_\Lambda M \to \Lambda \otimes_\Lambda M \to 0.
\]

We have the isomorphism \(\Lambda \otimes_\Lambda M = M \), and multiplication by 2 vanishes. Hence we get
\[
\text{Tor}_n^\Lambda(M, M) = \mathbb{Z}/2
\]
for all \(n \geq 0 \).
(iii) Use the same projective resolution as in (i) and apply $\text{Hom}_\Lambda(-, M)$. We have $\text{Hom}_\Lambda(\Lambda, M) = M$, and multiplication by 2 vanishes, so we get

$$\text{Ext}^n_\Lambda(M, M) = \mathbb{Z}/2$$

for all M.

Applying $\text{Hom}_\Lambda(-, \Lambda)$ and using $\text{Hom}_\Lambda(\Lambda, \Lambda) = \Lambda$ we get the cochain complex

$$0 \rightarrow \Lambda \xrightarrow{2} \Lambda \xrightarrow{2} \Lambda \xrightarrow{2} \ldots$$

which is exact in positive degrees. Hence $\text{Ext}^0_\Lambda(M, \Lambda) = \text{Hom}_\Lambda(M, \Lambda) = \mathbb{Z}/2$ and all the higher Ext groups vanish.

4.

(i) To see that $(\Delta_\ast(X), \partial)$ is a chain complex of Λ-modules we only need to check that ∂ is a homomorphism of Λ-modules. But this just the fact that T_\ast is a chain map.

To see that $\Delta_n(X)$ is a free Λ-module, notice that each $\sigma : \Delta^n \rightarrow Y$ has exactly two lifts to Y (because Δ^n is contractible). If $\tilde{\sigma} : \Delta^n \rightarrow X$ is one lift, then the other is $t\tilde{\sigma} = T \circ \tilde{\sigma}$. Pick a specific lift $\tilde{\sigma}$ for each σ. Then any element of $\Delta_n(X)$ can be written uniquely as a finite Λ-linear combination of the simplices $\tilde{\sigma}$ and $T\tilde{\sigma}$, as σ ranges through simplices of Y. But this just says that any element of $\Delta_n(X)$ can be written uniquely as a Λ-linear combination of the elements $\tilde{\sigma}$, so these form a basis.

(ii) The expression $n p_\ast(c)$ is obviously \mathbb{Z}-bilinear as a function of (n, c). Since $t \in \Lambda$ acts trivially on both \mathbb{Z} and $\Delta_\ast(Y)$, it is Λ-linear as a function of n. That it is Λ-linear in c amounts to $n p_\ast(T_\ast(c)) = n p_\ast(c)$ which follows from $p \circ T = p$.

To construct an inverse, pick as in (i) a particular lift $\tilde{\sigma}$ of each $\sigma : \Delta^n \rightarrow Y$. Then $\sigma \mapsto \tilde{\sigma} \otimes 1$ extends to a \mathbb{Z}-linear map $\Delta_\ast(Y) \rightarrow \Delta_\ast(X) \otimes_\Lambda \mathbb{Z}$. It is also Λ-linear because $t \in \Lambda$ acts trivially on both modules. It follows from (i) that $\Delta_n(X) \otimes_\Lambda \mathbb{Z}$ is generated as a \mathbb{Z}-module by the elements $\tilde{\sigma} \otimes 1$. It is clear that the two homomorphisms are each others inverse when applied to these generators.

(iii) We already proved that $\Delta_n(X)$ is a free Λ-module. When X is contractible $H_\ast(X) = 0$ which says precisely that the complex is exact. It remains to see that the augmentation is Λ-linear: on generators we have $\epsilon(t\sigma) = 1 = \epsilon(\sigma)$.

(iv) We can calculate $\text{Tor}^1_\Lambda(\mathbb{Z}, \mathbb{Z})$ by using the resolution in (iii). The isomorphism in (ii) commutes with the boundary map: $(\partial c) \otimes n = \partial(n p_\ast(c))$ since p_\ast is a chain map. Hence we get an isomorphism of chain complexes

$$\Delta_\ast(X) \otimes_\Lambda \mathbb{Z} \cong \Delta_\ast(Y).$$

One chain complex calculates Tor and the other calculates $H_\ast(Y)$, hence these are isomorphic.