4.5.30. Note that any element of order 7 generates a subgroup of order 7, and any subgroup of order 7 contains the identity and six elements of order 7.

Hence, we will count the subgroups of order 7.

\[168 = 7 \cdot 2^3 \cdot 3, \] so subgroups of order 7 are Sylow 7-subgroups.

Consider \(n_7 \), the number of Sylow 7-subgroups.

We know that \(n_7 \mid 168 \) and \(n_7 \equiv 1 \mod 7 \) (Sylow's theorem).

\[\therefore n_7 \mid \frac{168}{7} = 24 \] so \(n_7 = 1 \) or \(8 \).

If \(n_7 = 1 \), then because conjugating a subgroup by anything produces another subgroup of the same order, the unique subgroup of order 7 is normal contradicting the simplicity of our original group.

\[\therefore n_7 = 8, \] so there are 8 subgroups of order 7.

These subgroups are cyclic, so contain only the identity in common between any two. (Why is this important?)

\[\therefore \] Each of the 8 subgroups of order 7 has 6 elements of order 7, so there are 48 elements of order 7.
7.1.3) If \(u \) is a unit in \(S \) then there exists \(v \in S \)
with \(uv = vu = 1 \)

But \(S \subseteq R \), so \(v \in R \), so \(uv = vu = 1 \) in \(R \),
so \(u \) is a unit in \(R \).

The reverse implication does not hold. For example,
2 is a unit in \(\mathbb{Q} \) as \(2 \cdot 1/2 = 1/2 \cdot 2 = 1 \) but
2 is not a unit in the subring \(\mathbb{Z} \).

7.1.5) a) is a subring
b) is not closed under addition \(- \frac{1}{2} + \frac{1}{2} = \frac{1}{1} \)
c) is not closed under subtraction (a ring is an additive abelian group with
additional structure)
d) is not closed under addition \(- 1 + 1 = 2 \)
e) is not closed under addition \(- (1) = 2 \)
f) is a subring.

7.3.2) Let \(\phi : R \rightarrow S \) be an isomorphism of rings.
Then \(r \in R \) is a unit if and only if \(\phi(r) \in S \) is
a unit. (As \(rr^{-1} = 1 \Rightarrow \phi(r) \phi(r^{-1}) = \phi(1) = 1 \))

Then there are the same (potentially infinite) number of units
in \(R \) and \(S \).

The ring \(\mathbb{K}[x] \) has two units \(- 1 \) and \(- 1 \).
The ring \(\mathbb{Q}[x] \) has infinitely many units - all nonzero rationals.

\(\therefore \mathbb{Z}[x] \) and \(\mathbb{Q}[x] \) cannot be isomorphic.
7.3.10) a) is an ideal
b) is not closed under multiplication - $x \cdot (3x^2 + x) = 3x^3 + x^2$

e) is an ideal
f) is not closed under multiplication - $x(5) = 5x$

7.3.24) c) To show that $\mathcal{U}^{-1}(J)$ is a ideal of R, we need to show that it is nonempty, closed under subtraction, and closed under multiplication by arbitrary elements of R.

$\mathcal{U}(0_R) = 0_S$ and J is an ideal so $0_S \in J$, so $0_R \in \mathcal{U}^{-1}(J)$.

Consider any $a, b \in \mathcal{U}^{-1}(J)$.

$a - b$ is an element of R as R is closed under subtraction.

$\mathcal{U}(a - b) = \mathcal{U}(a) - \mathcal{U}(b)$, and $\mathcal{U}(a), \mathcal{U}(b)$ are in J, so $\mathcal{U}(a) - \mathcal{U}(b)$ is in J, as J is closed under subtraction.

$\mathcal{U}(a - b) \in J$, so $a - b \in \mathcal{U}^{-1}(J)$.

$\mathcal{U}^{-1}(J)$ is closed under subtraction.

Consider any $a \in \mathcal{U}^{-1}(J)$ and any $c \in R$.

$ca \in R$, so consider $\mathcal{U}(ca) = \mathcal{U}(c)\mathcal{U}(a)$.

$\mathcal{U}(a) \in J$ and J is an ideal so $\mathcal{U}(c)\mathcal{U}(a) \in J$.

$\mathcal{U}(ca) \in J$, so $ca \in \mathcal{U}^{-1}(J)$.

$\mathcal{U}^{-1}(J)$ is closed under multiplication by elements of R.

$\mathcal{U}^{-1}(J)$ is an ideal of R.

\[\mathbb{Q} \]
Now, let \(R \subseteq S \), and let \(\varphi : R \to S \) be the inclusion map.
The set \(\varphi^{-1}(J') \) is \(J \cap R \) for any ideal \(J \) of \(S \), and we know that \(\varphi^{-1}(J') \) is an ideal of \(R \), so \(J \cap R \) is an ideal of \(R \).

We need the inclusion map to actually be a homomorphism, but this is easily checked.

b) Now, let \(\varphi : R \to S \) be a surjective ring homomorphism, and let \(I \) be an ideal of \(R \).

To show that \(\varphi(I) \) is an ideal of \(S \), we need to show that \(A \) is nonempty, closed under subtraction, and closed under multiplication by arbitrary elements of \(S \).

Let \(\varphi(a) \) and \(\varphi(b) \) be arbitrary elements of \(\varphi(I) \), for \(a, b \in I \). Then \(\varphi(a-b) = \varphi(a) - \varphi(b) \), so \(\varphi(a) - \varphi(b) \in \varphi(I) \) as \(a-b \in I \) (\(I \) being closed under subtraction).

Let \(\varphi(a) \) be an arbitrary element of \(\varphi(I) \), and let \(s \) be an arbitrary element of \(S \). We want to show that \(s \varphi(a) \in \varphi(I) \). We know that \(\varphi : R \to S \) is surjective, so there exists some \(r \in R \) with \(\varphi(r) = s \).

Then \(\varphi(r \varphi(a)) = \varphi(r) \varphi(a) = \varphi(ra) \). But \(ra \in I \) and \(I \) is an ideal of \(R \), so \(ra \in I \). Then \(\varphi(ra) = \varphi(r) \varphi(a) \in \varphi(I) \).

Thus, \(\varphi(I) \) is closed under multiplication by arbitrary elements.
$\mathbb{Q}(\mathbb{Z})$ is an ideal of \mathbb{S} as required.

To show that the surjectivity of \mathbb{Q} is necessary, consider the map $\mathbb{Q}: \mathbb{Z} \to \mathbb{Q}$, where \mathbb{Q} is the inclusion map $\mathbb{Q}(n) = n$ for each $n \in \mathbb{Z}$.

The set $2\mathbb{Z}$ is an ideal of \mathbb{Z}, but $\mathbb{Q}(2\mathbb{Z})$, the set of rational numbers which are even integers, is not an ideal of \mathbb{Q}. For example, multiplying $2 \in 2\mathbb{Z}$ by $\frac{1}{2} \in \mathbb{Q}$ produces 1, which is not in $2\mathbb{Z}$.