Math 113 midterm, 2/7/11, 7pm-9pm.

Open books, open notes. No calculators. No computers, cell phones, or other internet capable devices.

1. (10p) Let \(V \) and \(W \) be finite dimensional vector spaces. Prove that there exists an injective linear map \(T : V \to W \) if and only if \(\dim(V) \leq \dim(W) \).

2. (10p) Let \(T \in \mathcal{L}(V) \).
 (i) Prove that if \(T^2 = I \), then \(V = \text{Null}(T + I) \oplus \text{Null}(T - I) \).
 (ii) Prove that if \(V = \text{Null}(T + I) + \text{Null}(T - I) \), then \(T^2 = I \).

3. (10p) Let \(T \in \mathcal{L}({\mathbb{C}}^2) \) be the map given by \(T(x,y) = (2x-y,x) \).
 (i) Prove that 1 is an eigenvalue of \(T \) and find a basis for \(\text{Null}(T - I) \).
 (ii) Does \(T \) have other eigenvalues? (as usual, you must prove your answer).

4. (10p) Let \(T \in \mathcal{L}(V) \) and \(p \in \mathcal{P}(\mathbb{F}) \).
 (i) Prove that if \(\lambda \) is an eigenvalue of \(T \), then \(p(\lambda) \) is an eigenvalue of \(p(T) \).
 (ii) Now assume \(p(T) = 0 \). Prove that all eigenvalues of \(T \) are roots of \(p \).

5. (10p) Let \(T \in \mathcal{L}(\mathbb{P}_2(\mathbb{R})) \) be the linear map given by \((Tp)(t) = p(t+1) \).
 (i) Find the matrix of \(T \) with respect to the basis \(\{1, t, t^2\} \) of \(\mathbb{P}_2(\mathbb{R}) \).
 (ii) Let \(A \) denote the matrix of \(T \) from (i). Prove that there exists a matrix \(B \in \text{Mat}(3,3,\mathbb{R}) \) such that \(AB = BA = M(I) \).

6. (20p) Let \(V \) be finite dimensional and let \(T \in \mathcal{L}(V) \). For \(k \geq 0 \), set \(U_k = \text{Null}(T^k) \).
 (i) Prove that \(U_k \subseteq U_{k+1} \) for all \(k \geq 0 \).
 (ii) Prove that \(U_k \) is invariant under \(T \) for all \(k \geq 0 \).
 (iii) Let \(n = \dim(V) \). Prove that if \(U_n \neq V \), then \(U_{k-1} = U_k \) for some \(k \leq n \).
 (iv) Prove that if \(U_{k-1} = U_k \), then \(U_k = U_{k+1} \).
 (v) Prove that if \(U_n \neq V \), then \(U_k \neq V \) for all \(k \geq n \).
 (vi) Deduce that if \(T^k = 0 \) for some \(k \), then \(T^n = 0 \) for \(n = \dim(V) \).