Homework due 1/12: 1.3, 1.4, 1.11, 1.12, 1.14, and the following exercises.

1. Let X be a set and write \mathbb{F}^X for the set of functions $X \to \mathbb{F}$. Define addition by $(f + g)(x) = f(x) + g(x)$ and define scalar multiplication by $(af)(x) = a(f(x))$ for $f, g \in \mathbb{F}^X$ and $a \in \mathbb{F}$. Prove that \mathbb{F}^X is a vector space with these operations. (This was asserted in class.)

2. Prove that the only subspaces of \mathbb{F}^1 are $\{0\}$ and \mathbb{F}^1.

3. Let U denote the set of functions $f : \mathbb{Z} \to \mathbb{F}$ for which there exists an $N \in \mathbb{Z}$ such that $f(t) = 0$ for $t \geq N$. Prove that U is a subspace of the space of functions.

4. For each of the following statements, either prove it or give a counterexample.

(a) Let U_1, U_2 and U_3 be subspaces of V. Then their sum is direct if $U_1 \cap U_2 \cap U_3 = \{0\}$.

(b) Let U_1, U_2 and U_4 be subspaces of V. Then their sum is direct if $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_3 = \{0\}$.

5. Let \mathcal{U} be a collection of subspaces of V. (I.e. \mathcal{U} is a set, all of whose elements are subspaces of V.) Do not assume that \mathcal{U} is finite. Recall that the intersection of \mathcal{U} is defined by

$$\bigcap \mathcal{U} = \{v \in V \mid v \in U \text{ for all } U \in \mathcal{U}\}.$$

(a) Prove that $\bigcap \mathcal{U}$ is a subspace of V.

(b) Prove that if W_1, \ldots, W_m are subspaces of V, and \mathcal{U} is the collection

$$\mathcal{U} = \{U \subseteq V \mid U \text{ is a subspace, and } W_i \subseteq U \text{ for all } i = 1, 2, \ldots, m\},$$

then $\bigcap \mathcal{U} = W_1 + \cdots + W_m$.

(Hint for (b): First prove $\bigcap \mathcal{U} \subseteq W_1 + \cdots + W_m$, then prove $\bigcap \mathcal{U} \supseteq W_1 + \cdots + W_m$.)