1. (20p) Let V be a complex vector space of dimension 3, and let $T \in \mathcal{L}(V)$ be an operator whose matrix with respect to some basis B is

$$M(T, B) = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

(i) Find all eigenvalues of T and their multiplicities.

(ii) Prove that there exists another basis B' such $M(T, B')$ is diagonal.

Solution.

(i) By Proposition 5.18 the eigenvalues are the diagonal entries 1, 4, 6. The multiplicity of each is the number of times it appears on the diagonal, which is 1 for each.

(ii) Since T has $3 = \dim(V)$ distinct eigenvalues, it is diagonalizable by Proposition 5.20.

2. (30p) Let V be a finite dimensional complex inner-product space.

(i) Prove that if $T, S_1, S_2 \in \mathcal{L}(V)$ satisfy $T = S_1 + iS_2$ and S_1, S_2 are self-adjoint, then $2S_1 = T + T^*$ and $2iS_2 = T - T^*$.

(ii) Prove that for any $T \in \mathcal{L}(V)$ there are unique self-adjoint operators $S_1, S_2 \in \mathcal{L}(V)$ such that $T = S_1 + iS_2$.

(iii) Prove that $T \in \mathcal{L}(V)$ is normal if and only if the operators S_1, S_2 from the previous question commute.

Solution.

(i) By self-adjointness, $S_1^* = S_1$ and $(iS_2)^* = -iS_2$. Then $T + T^* = (S_1 + iS_2) + (S_1 + iS_2)^* = S_1 + iS_2 + S_1^* + (iS_2)^* = 2S_1 + iS_2 - iS_2 = 2S_1$. Similarly, $T - T^* = (S_1 + iS_2) - (S_1 + iS_2)^* = S_1 + iS_2 - S_1^* - (iS_2)^* = iS_2 + iS_2 = 2iS_2$. These calculations (and the ones in the following questions) use the properties on page 119 in Axler.
(ii) Uniqueness follows from (i). For existence, if we let \(S_1 = (T + T^*)/2 \) and \(S_2 = (T - T^*)/(2i) \) then \(S_1 + iS_2 = T \). To see self-adjointness, \(S_1^* = (T + T^*)^*/2 = (T^* + T)/2 = S_1 \) and \(S_2^* = (T - T^*)^*/(-2i) = -(T^* - T)/(2i) = S_2 \).

(iii) Assume \(T = S_1 + iS_2 \) with \(S_1 \) and \(S_2 \) commuting self-adjoint operators. Then \(T^*T = (S_1 + iS_2)^*(S_1 + iS_2) = (S_1 - iS_2)(S_1 + iS_2) = S_1^2 + S_2^2 \), using commutativity in the last step. Applying the same calculation to \(T = S_1 - iS_2 \) gives \(T^*T = S_1^2 + (-S_2)^2 = TT^* \) so \(T \) is normal. For the converse, suppose \(S_1 \) and \(S_2 \) are self-adjoint operators and \(T = S_1 + iS_2 \) is normal. Then \(T^*T = (S_1 + iS_2)^*(S_1 + iS_2) = (S_1 - iS_2)(S_1 + iS_2) = S_1^2 + S_2^2 + i(S_1S_2 - S_2S_1) \), whereas \(TT^* = S_1^2 + S_2^2 - i(S_1S_2 - S_2S_1) \). Since \(T \) is normal, these are equal, and we get \(2i(S_1S_2 - S_2S_1) = 0 \), whence \(S_1 \) and \(S_2 \) commute.

3. (20p)

(i) Let \(V \) be a four-dimensional complex vector space, and let \(T \in \mathcal{L}(V) \) be an operator with eigenvalues 1, 2, and 3 (and no other eigenvalues). Prove that
\[
((T - 1)(T - 2)(T - 3))^2 = 0.
\]

(ii) Let \(V \) be a finite dimensional complex vector space and let \(T \in \mathcal{L}(V) \) be an operator. Let \(p \in \mathcal{P}(\mathbb{C}) \) be a polynomial such that \(p(\lambda) = 0 \) for all eigenvalues \(\lambda \) of \(T \). Prove that \(p(T) \) is nilpotent.

Solution.

(i) For \(\lambda = 1, 2, 3 \), let \(U_\lambda = \text{Null}(T - \lambda I)^4 \) be the corresponding generalized eigenspace. We proved in class that \(V = U_1 \oplus U_2 \oplus U_3 \), so \(4 = \dim(U_1) + \dim(U_2) + \dim(U_3) \). Each \(U_\lambda \) contains an eigenvector, so it has dimension at least 1. If some \(U_\lambda \) had dimension \(\geq 3 \), then we’d have \(\dim(U_1) + \dim(U_2) + \dim(U_3) \geq 5 \); the contradiction proves \(\dim(U_\lambda) \leq 2 \). Since \((T - \lambda I)|_{U_\lambda}^2 = \mathbf{0} \) and \(\dim(U_\lambda) \leq 2 \) we get \((T - \lambda I)|_{U_\lambda}^2 = \mathbf{0} \), by Proposition 8.6. This implies that the operator
\[
S = ((T - 1)(T - 2)(T - 3))^2
\]
has \(Sv = 0 \) if \(v \) is in one of the \(U_\lambda \) (because in that case \(Sv = S|_{U_\lambda}v = 0 \)). But the \(U_\lambda \) are the generalized eigenspaces, so \(V = U_1 \oplus U_2 \oplus U_3 \) and hence any vector is a sum of vectors in some \(U_\lambda \). By linearity of \(S \) we get \(Sv = 0 \) for all \(v \in V \).

(ii) I claim that if \(n = \dim(V) \) then \((p(T))^n = 0 \). Let \(\lambda \) be an eigenvalue. Since \(p(\lambda) = 0 \) we can write \(p(z) = (z - \lambda)q(z) \) for some polynomial \(q \).
Then \(p(T)^n = (q(T))^{n}(T - \lambda I)^n \), so if \(v \in U_\lambda = \text{Null}((T - \lambda I)^n) \), then
\[
(p(T))^n v = (q(T))^{n}(T - \lambda I)^n v = 0.
\]
Thus \((p(T))^n v = 0 \) for any generalized eigenvector \(v \), and as before this implies \(p(T)v = 0 \) for any \(v \).

[Both these questions could also be solved using Cayley–Hamilton.]

4. \((40p + 10p)\) Let \(V \) be a finite dimensional complex vector space. Assume \(\dim(V) > 0 \).

(i) Let \(q \in \mathcal{P}(\mathbb{C}) \) be any polynomial with \(q(0) \neq 0 \). Prove that there exist \(p \in \mathcal{P}(\mathbb{C}) \) and \(a \in \mathbb{C} \) such that
\[
1 + aq(z) = zp(z).
\]

(ii) Prove that if \(q_T \) is the characteristic polynomial of an invertible operator \(T \in \mathcal{L}(V) \), then \(q_T(0) \neq 0 \).

(iii) Prove that if \(T \in \mathcal{L}(V) \) is an invertible operator, then there exists a polynomial \(p \in \mathcal{P}(\mathbb{C}) \) such that \(p(T) = T^{-1} \).

(iv) Does there exist a polynomial \(p \in \mathcal{P}(\mathbb{C}) \) such that for all invertible operators \(T \in \mathcal{L}(V) \), \(p(T) = T^{-1} \)?

(v) \((\text{Bonus})\) Now assume \(V \) is an inner-product space and let \(T \in \mathcal{L}(V) \) be a positive operator, with positive square root \(S \). Prove that there exists a polynomial \(p \in \mathcal{P}(\mathbb{C}) \) such that \(p(T) = S \).

Solution.

(i) Let \(q(z) = a_n z^n + \cdots + a_0 \). Then \(q(0) = a_0 \neq 0 \). Then \(a = -1/a_0 \) and
\[
p(z) = a(a_n z^{n-1} + \cdots + a_1)
\]
works.

(ii) The characteristic polynomial is defined in terms of \(\mathcal{M}(T) \), after picking a basis in which this is an upper triangular matrix. Let the diagonal entries be \(\lambda_1, \ldots, \lambda_n \). We’ve seen that \(T \) is invertible if and only if all \(\lambda_i \) are non-zero (proposition 5.16 in Axler). But since \(q_T(z) = (z - \lambda_1) \cdots (z - \lambda_n) \), we have \(q_T(0) = (-1)^n \lambda_1 \cdots \lambda_n \neq 0 \).

(iii) Let \(q = q_T \) and let \(a \) and \(p \) be as in (i). Then \(I + aq(T) = Tp(T) \).

Cayley–Hamilton implies that \(q(T) = 0 \), so this just says \(Tp(T) = I \), so \(p(T) = T^{-1} \).

(iv) No. Such a \(p \) would have \(Tp(T) = I \) for all \(T \), and in particular \(T = \lambda I \). Since \((\lambda I)p(\lambda I) = (\lambda p(\lambda))I \), this implies \(zp(z) = 1 \) for all \(z \in \mathbb{C} \setminus \{0\} \), and hence the polynomial \(q(z) = 1 - zq(z) \) has infinitely many roots. Only the zero polynomial has infinitely many roots, since a non-zero polynomial can...
be written \(c(z - \lambda_1) \ldots (z - \lambda_n) \) and has the at most \(n \) roots \(\lambda_1, \ldots, \lambda_n \).

It follows by contradiction that \(z p(z) \) must be the zero polynomial. On the other hand \(q(z) \) is clearly not the zero polynomial, since \(q(0) = 1 \), contradicting the existence of \(p \).

(v) Pick a polynomial \(p \) with real coefficients, such that \(p(\lambda) = \sqrt{\lambda} \) for all eigenvalues \(\lambda \) of \(T \). Then the polynomial \(q(z) = (p(z))^2 \) has \(q(\lambda) = \lambda \) for all eigenvalues. Therefore \(q(T)v = q(\lambda)v = \lambda v \) whenever \(Tv = \lambda v \), i.e. \(q(T) \) acts as the identity on any eigenvector. By linearity it acts as the identity on any linear combination of eigenvectors. By the spectral theorem (\(T \) is positive, hence self-adjoint), any vector can be written as a linear combination of eigenvectors, so \(q(T) \) is the identity. Therefore \(q(T)v = \lambda v \) whenever \(Tv = \lambda v \), i.e. \(q(T) \) acts as the identity on any eigenvector.

To see that it is possible to choose such a polynomial \(p \) with this property, let \(\lambda_1, \ldots, \lambda_m \) be the distinct eigenvalues. We prove by induction that there exists \(p_i \) with \(p_i(\lambda_j) = \sqrt{\lambda_j} \) for \(j \leq i \). We can set \(p_1(z) = \sqrt{\lambda_1} \), and inductively

\[
p_i(z) = (p_{i-1}(z)) + \frac{(z - \lambda_1) \ldots (z - \lambda_{i-1})}{(\lambda_i - \lambda_1) \ldots (\lambda_i - \lambda_{i-1})}(\sqrt{\lambda_i} - p_{i-1}(\lambda_i)).
\]

This new \(p_i \) is clearly a polynomial and has \(p_i(\lambda_j) = p_{i-1}(\lambda_j) = \sqrt{\lambda_j} \) for \(j < i \) since the second term is 0 for such \(j \), and \(p_i(\lambda_i) = \sqrt{\lambda_i} \). Then \(p = p_m \) has the desired property.

5. (15p) In this problem (only!) you need not justify answers. All vector spaces named \(V \) are assumed finite dimensional. True or false:

(a) If \(V \) is a complex vector space and \(T \in \mathcal{L}(V) \) has characteristic polynomial \(q(z) = z^2 - 3z + 2 \) then there must exist a basis consisting of eigenvectors of \(T \).

(b) If \(V \) is a complex vector space and \(T \in \mathcal{L}(V) \) has characteristic polynomial \(q(z) = z^4 - z^2 \), then \(\dim(\text{Null}(T^2)) \) must be 2.

(c) If \(V \) is a complex vector space and all eigenvalues of \(T \in \mathcal{L}(V) \) are real numbers, then there exists an inner product on \(V \) such that \(T \) is self-adjoint.

(d) If \(V \) is a complex inner-product space and \(T \in \mathcal{L}(V) \) is self-adjoint, then \(T^2 \) is positive.

(e) If \(V \) is a complex inner product space and \(T \in \mathcal{L}(V) \) is positive, then there exists a unique positive \(S \in \mathcal{L}(V) \) with \(S^4 = T \).
Solution.

(a) True. [Since \(q(z) = (z - 1)(z - 2) \) has roots 1 and 2, there is a basis for \(V \), such that \(\mathcal{M}(T) \) is upper triangular and the diagonal entries are 1 and 2 which are therefore the eigenvalues. Since \(\dim(V) = \deg(p) = 2 \) and \(T \) has 2 distinct eigenvalues it must be diagonalizable.]

(b) True. \[q(z) = z^2(z-1)^2, \] so by the same reasoning as before, the eigenvalues are 0 and 1, both with multiplicity 2. Therefore the generalized eigenspace \(U = \text{Null}(T^4) \) has dimension 2, and hence \((T|_U)^2 = 0 \), so \(U \subseteq \text{Null}(T^2) \). But clearly also \(\text{Null}(T^2) \subseteq \text{Null}(T^4) = U \), so they are equal.

(c) False. [Example: \(V = \mathbb{C}^2 \), \(T(x, y) = (y, 0) \) has \(T^2 = 0 \) so the only eigenvalue is 0, which is real, but since \(\dim(\text{Null}(T)) = 1 \) the operator is not diagonalizable, and hence not self-adjoint, by the spectral theorem.]

(d) True. [We saw in class that \(T^*T \) is positive for any operator, but if \(T \) is self-adjoint, then \(T^*T = T^2 \).]

(e) True. [We saw there exists positive \(R \) with \(R^2 = T \). Applying that again, there exists positive \(S \) with \(S^2 = R \) but then \(S^4 = T \). For uniqueness, suppose \(S_1^4 = S_2^4 = T \) for positive \(S_1, S_2 \). Then \(S_1^2 \) and \(S_2^2 \) are positive square roots of \(T \), so by uniqueness must be equal: \(S_1^2 = S_2^2 = R \). But then \(S_1 \) and \(S_2 \) are positive square roots of \(R \) so by uniqueness are equal.]