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Is the Totality of All Sets an 
Indefinite Totality?

• Definite totalities are set-like.  If definite totalities 
are sets then the totality of all sets is indefinite 
(Russell).                                

• Zermelo (1930) seems to view the totality of all 
sets in this way: “[T]he transfinite number 
series...in its unrestricted progression features no 
real conclusion, but only relative stopping points.”

• Dummett: The concept of set is “indefinitely 
extensible” (1963 and on).  

• Similar considerations for finitism, predicativity. 



Some Recent Philosophical Literature

• Hellman, “Maximality vs. Extendability: Reflections 
on structuralism and set theory” (2002) 

• Shapiro, “All sets great and small:  And I do mean 
All” (2003)

• Linnebo, “Sets, properties and unrestricted 
quantification” (2005)

• Hellman,                                                                  
“Against ‘absolutely everything’!” (forthcoming)



A Formal Distinction Between
Definite and Indefinite Concepts

• “What’s definite is the domain of classical logic, 
what’s not is that of intuitionistic logic.” 

• In the case of predicativity, consider systems in 
which quantification over natural numbers is 
governed by classical logic, while quantification 
over sets of natural numbers (and sets more 
generally) is governed by intuitionistic logic. 

• In the 1970s, I used such systems as intermediate 
tools in my work applying functional interpretation 
with non-constructive operators.



A Formal Distinction (Continued)

• In the case of set theory, where every set is 
conceived to be a definite totality, but the universe 
of sets is an indefinite totality, accept classical logic 
for bounded quantification while use intuitionistic 
logic for unbounded quantification. 

• Some early case studies on relatively strong semi-
intuitionistic subsystems of ZF: Poszgay (1971, 
1972), Tharp (1971), Friedman (1973), Wolf (1974);

• and on a relatively weak system: Friedman (1980), 
“A strong conservative extension of Peano 
Arithmetic” (the system ALPO).



A General Pattern for Studies

• Start with a system S formulated in fully classical 
logic, and consider an associated system SI 
formulated in a mixed, semi-intuitionistic logic.

• Ask whether there is any essential loss in proof-
theoretical strength when passing from S to SI.  

• In the cases that are studied, it turns out that there 
is no such loss. 



A General Pattern (Continued)

• But there can be an advantage in going to such a 
semi-intuitionistic system SI:

• Namely, we can beef it up to a semi-constructive 
system SC without changing the proof-theoretical 
strength from that of S (the original classical 
system), by the adjunction of certain principles that 
go beyond what is admitted in SI.



The Case of Admissible Set Theory

• Start with S = KPω, the classical system of 
admissible set theory (including the Axiom of 
Infinity)

• SI has the same axioms as KPω, but is based on 
intuitionistic logic plus the Law of Excluded Middle  
for bounded  formulas, 

• (Δ0-LEM)    φ ∨ ¬φ, for all Δ0 formulas φ.  

• SI = IKPω + (Δ0-LEM)



A Semi-Constructive System of 
Admissible Set Theory

• Beef up SI to a system SC that includes the Full 
Axiom of Choice Scheme for sets (ACSet),

∀x∈a∃y φ(x,y)→∃r[Fun(r)∧dom(r)=a∧∀x∈a φ(x,r(x)]   

for φ an arbitrary formula, 

• Then SC proves the Full Collection Axiom 
Scheme, 

        ∀x∈a∃y φ(x,y)→∃b∀x∈a∃y∈b φ(x,y),  for φ 

arbitrary, while this holds only for ∑1 formulas in SI.  



Some Other Principles for SC

• Bounded Omniscience Scheme(BOS), 

   (∀x∈a)[φ(x)∨¬φ(x)] →                                                

(∀x∈a)φ(x)∨ (∃x∈a)¬φ(x), for all formulas φ(x).

• Markov’s Principle (MP),                                      
¬¬∃x φ → ∃x φ, for all Δ0 formulas φ.

• Independence of Premises (IP),                              
(∀x φ→∃y ψ) → ∃y(∀x φ→ψ),                          
for all Δ0 φ, ψ. 



Axioms of KPω

1. Extensionality

2. Unordered pair

3. Union

4. Infinity 

5. Δ0-Separation

6. Δ0-Collection

7. The ∈-Induction Axiom Scheme



An Intermediate Reduction

• SI = IKPω + (Δ0-LEM)

• Theorem. KPω  ≤ SI + (MP)

• Proof. By adaptation of the Gödel-Gentzen 
Negative or “double-negation” interpretation.    
Use (Δ0-LEM) + (MP) to take care of the Δ0-
Collection Axiom, where φ is a Δ0 formula:

  (∀x∈a)¬¬∃y φ(x, y) → ¬¬∃b(∀x∈a)(∃y∈b)φ(x, y).  



The Semi-Constructive System 

• Take SC = SI +(ACSet)+(BOS)+(MP)+(IP) 

• SC proves Full Collection and Full Replacement

• To prove SC ≤ KPω, will pass through an 
intermediate functional finite type extension   
FSC↑ via an adaptation of Gödel’s Dialectica 
(D-)interpretation

• For simplicity, will only present the type 1       
(over sets) part FSC of FSC↑ with some type 2 
operators.  



The Language of FSC

• FSC has both set variables a, b, c, x, y, z,... (variables 
of type V) and function variables f, g, h,… (variables 
of type V → V). 

• FSC has constants of various types, to begin with 
the set constants 0 and ω, 

• and “logical operation” constants E, M, D, N, C, 
which serve to reduce every Δ0 formula to an 
equation and prove Δ0-LEM.  



The “Logical” Axioms of FSC

1. (Atomic decidability)  x=y ∨ x≠y

 2. (Equality)

 E(x, y)=0 ↔ x=y

 3. (Membership) 
 M(x, y)=0 ↔ x∈y

 4. (Disjunction) 
D(x, y)=0 ↔ x=0 ∨ y=0

 5. (Negation) 

 N(x)=0 ↔ x≠0 

 6. (Bounded choice)

          (∃x∈a)f(x)=0 ↔ C(a,f)∈a ∧ f(C(a,f))=0.

 



First Consequence

• Lemma 1. For each Δ0 formula φ(x) of set 
theory with at most x = x1,…, xn free we have a 
term tφ such that the following is provable in FSC:         
tφ[x] = 0 ↔ φ(x).


 
 




“Semi-logical” axioms of FSC

•  Markov’s Principle (MP)                                      
¬¬∃x f(x)=0 → ∃x f(x)=0.

• Independence of Premises (IP)                             
[∀x f(x)=0→∃y∀z g(x,y)=0] →                                 
∃y[∀x f(x)=0→∀z g(x,y)=0]

• Axiom of Choice for Functions (ACFun)               
∀x∃y φ(x, y) → ∃f ∀x φ(x, f(x)), for all φ(x, y).



Set-theoretical Constants 
and Axioms of FSC

• Extensionality

• Axioms for 0, ω, P (Unordered pair), U (Union)

• S (Separation), with axiom                                       
x∈S(a, f) ↔ x∈a ∧ fx=0

• R (Range), with axiom y∈R(a, f) ↔ (∃x∈a) f(x)=y

• (∈−Induction)                                                            
∀x[(∀y∈x)φ(y)→φ(x)] → ∀x φ(x),  for all φ(x). 



Cartesian Product

• Notation: {x, y} = P(x, y), {x} = {x, x}, x ∪ y = 
U{x,y}, x′ = x ∪{x}, ⟨x, y⟩ = {{x}, {x, y}}. 

• Lemma 2.  There is a closed term Prod such that 
FSC proves                                                       z 
∈ Prod(a, b) ↔ ∃x, y[z =⟨x, y⟩ ∧ x∈a ∧ y∈b]. Proof.  

Prod(a, b) (= a x b) = U(R(a, f)) where                         
f = λx. R(b, λy.⟨x, y⟩) (= λx. {x} x b)



Function Restriction

Corollary. There is a closed term Res such that FSC 

proves 

z∈Res(a, f) ↔ (∃x∈a)(∃y∈R(a, f)[z = ⟨x, y⟩∧ fx = y].

Proof.  Res(a, f) is formed by Δ0-Separation (S) from 

the Cartesian product a×R(a, f).  It is the graph of f 

restricted to a, considered as a set. 

Notation:  f|a for Res(a, f).



Lemma 3.  The system SC is contained in FSC.  

• Proof. Δ0-LEM follows from Lemma 1 and               
decidability of =.  

• Δ0-Separation and Δ0-Collection follow from 
Lemma 1 together with the use of the S and R 
operators, resp. 

• MP (IP) for Δ0 formulas follows from Lemma 1 by 
use of MP (IP) for functions. 

• (ACSet) follows from (ACFun) by using the 
restriction operation f|a.



Lemma 3 Proof (Concluded)

• To obtain the Bounded Omniscience Scheme 
(BOS), suppose ∀x∈a[φ(x)∨¬φ(x)]; then 
∀x∈a∃y[(y=1∧φ(x))∨(y=0∧¬φ(x))], 

        so ∃f(∀x∈a){[f(x)=0∨f(x)=]∧[f(x)=1 ↔ φ(x)]}.   

• (∃x∈a)f(x)=0↔ C(a,f)∈a ∧ f(C(a,f))=0                       

by Bounded Choice, and that’s decidable,

• so we have (∀x∈a)φ(x)∨(∃x∈a)¬φ(x).



The System FSC↑

• FSC↑ has functional variables of every finite type 
over V.

• It uses only bounded quantifiers. 

• Its “logical” constants and axioms are the same as 
for SC.

• Its set-theoretical constants (0, ω, P, U, S, R) and 
axioms are the same as for SC.

• It also has an ∈−Induction Rule and Recursors in 
all finite types.   



FSC and FSC↑

• NB. FSC↑ does not have MP, IP or ACFun .

• Theorem 1. FSC has a D-(Dialectica form) 
interpretation in FSC↑. 

• The proof is in my forthcoming paper:                   
“On the strength of some semi-constructive 
theories,” for the Grigori Mints Festschrift in 
honor of his 70th birthday, June 7, 2009.  

• Related results are given there for semi-
constructive predicative theories and  countable 
tree ordinals.



Closing the Circle

• Theorem 2. We have the following proof-
theoretical reductions:

KPω ≤ SC ≤ FSC ≤ FSC↑ ≤ OST ≤ KPω.        

[OST is the system from my WoLLIC ’06 paper 

“Operational Set Theory and Small Large Cardinals”    

to appear in Information and Computation.                              

The last ≤ is proved there, and also by Jäger in              

Annals of Pure and Applied Logic 150 (2007).] 



Adding the Power Set Axiom

• Let Pow be the axiom ∀a∃b∀x(x∈b ↔ x⊆a) in SC.  

• In FSC and FSC↑, the axiom Pow, with a new 
constant symbol P, is written x∈P(a) ↔ x⊆a.

• Pow(ω) is the special case of Pow:                     
x∈P(ω) ↔ x⊆ω. 



On the Strength of 
Semi-Constructive Systems with Pow

• Theorem 3. We have the following proof-
theoretical reductions:

KPω +(Pow) ≤ SC+(Pow) ≤ FSC+(Pow) ≤      

FSC↑+(Pow) ≤ OST+(Pow) ≤ KPω+(Pow)+(V=L).

The same holds when we replace (Pow) by the 

special case, Pow(ω).

(The strength of systems related to SC+(Pow) have 

been studied by Wolf (1974), Stanford PhD thesis.)



On the Strength with Pow (cont’d)

• The proof of Theorem 3 proceeds along exactly 
the same lines as for Theorem 2, through the D-
interpretation of FSC+(Pow) in FSC↑+(Pow) 
followed by the interpretation of the latter in   
OST+(Pow).

• The final reduction, OST+(Pow) ≤ KPω+(Pow)+
(V=L), is due to Jäger in APAL 150 (2007).

• Is KPω+(Pow)+(V=L) ≤ KPω+(Pow)?               
(The usual argument doesn’t work.)



What Properties are Definite?

• From the overall logical point of view taken here, 
φ(x) is formally definite if we have 
∀x[φ(x)∨¬φ(x)] .

• But looked at more particularly within the kind of 
framework provided by FSC, using (AC), φ(x) is 
definite just in case ∃f ∀x [f(x) = 0 ↔ φ(x)].

• By Lemma 1, all Δ0 formulas are formally definite.  
But could there be more such formulas?  



Definite Properties from the 
Model-Theoretic Point of View

• A formula φ(x) in the language of set theory is 
model-theoretically definite relative to an axiom 
system T if φ is invariant under end-extensions in 
models of T.

• Theorem (Feferman 1968) This holds just in case 
there are an essentially ∑1 formula ψ(x) and 
essentially ∏1 formula θ(x) such that 

      (†)
T ⊦ ∀x(ψ(x) ↔ θ(x))  and T ⊦ ∀x(φ(x) ↔ ψ(x)). 



The View from FSC

• Theorem 4. If φ(x) satisfies (†) for T = FSC 
then FSC ⊦ ∀x[φ(x)∨¬φ(x)].  

• Proof. By Lemma 1 and AC, there are terms 
s(x,y) and t(x,y) such that FSC proves                
(††) ∀x[(∃y)s(x, y)=0 ↔ (∀z)t(x, z)=0] and              

∀x[φ(x) ↔(∃y)s(x, y)=0].  



The Proof of Theorem 4 (cont’d)

           Apply IP to ∀x[(∀z)t(x, z)=0 → (∃y)s(x, y)=0] 

          to obtain ∀x∃y[(∀z)t(x, z)=0 → s(x, y)=0].

          So by AC, there exists a function f such that

           ∀x[(∀z)t(x, z)=0 → s(x, f(x))=0].

          We also have ∀x[(∃y)s(x, y)=0 → (∀z)t(x, z)=0], so 

          ∀x[(∃y)s(x, y)=0 → s(x, f(x))= 0].  Hence  φ(x) is 

          equivalent to s(x, f(x))=0, and so is formally definite.



Definite Predicates and ∈−Induction

• Slogan: Definite predicates are those that have a 
characteristic function.

• Since Separation is supposed to be restricted to 
definite predicates, shouldn’t we do the same with 
∈−Induction?

• That is, shouldn’t we restrict it to                    
(IFun)  ∀x[(∀y∈x)f(y)=0 → f(x)=0] →∀x[f(x)=0]?

• F SC0 is FSC restricted to (IFun); SC0 is SC with the 
∈−Induction scheme restricted to Δ0 formulas.



Friedman’s ALPO

• Friedman, “Analysis based on the Limited Principle 
of Omniscience,”  The Kleene Symposium (1980).  

• ALPO is a semi-constructive system whose overall 
logic is intuitionistic.

• It is a fragment of KPU in which the urelements 
are taken to be the natural numbers equipped with  
0 and successor.  



The Axioms of ALPO

A. Ontological axioms, B. Urelement extensionality, 

C. Successor axioms, D. Infinity, E. Sequential induction, 

F. Sequential recursion, G. Pairing, H. Union, 

I.  Exponentiation, J. Countable choice, 

K. Δ0-Separation,  L. Strong Collection, and 

M. Limited principle of omniscience. 



Friedman’s Conservation Theorem

Theorem (Friedman, 1980).  ALPO is a conservative 

extension of PA.  

Remark: Friedman’s proof makes use of a series of reductions,   

the last part of which appeals to a model-theoretic argument 

from his earlier “Set theoretic foundations for constructive 

analysis”, Annals of Mathematics 105 (1977).



Conjectures

1. ALPO is proof-theoretically reducible to PA.  

2. SC0 and FSC0 are proof-theoretically reducible to 

PA. [Note that ALPO w/o Exp axiom ⊆ SC0 .] 

3. These systems are proof-theoretically reducible 

to PA when Exp is added but AC is restricted to 

countable AC . [Full AC plus Exp allows derivation 

of arithmetical DC.]



Semi-Constructive Mathematics

• How much mathematics can be carried out in                              
SC,  SC + Pow(ω),  SC + Pow, etc.?

• SC + Pow(ω) looks like an appropriate setting for 
representing the work of the French school of 
semi-intuitionists.



What Statements are Definite?

• φ is formally definite in one of our systems if      
φ ∨ ¬φ is provable there.  

• Is the Continuum Hypothesis (CH) definite?  

• CH is expressible in SC + Pow(ω) but probably 
not formally definite there.  (How prove?)            
It is formally definite in SC + Pow(Pow(ω)).  

• Formal definiteness is a very crude criterion of 
definiteness.  Need more refined notions of 
definiteness/indefiniteness to throw light on 
whether CH is a definite statement.  



The Problem of Large Cardinal Axioms in 
an Indefinitely Extendible Universe

• What justification, if any, could be given for 
reflection principles (first order, higher order) in 
semi-constructive set theories (± Pow)? 

• What about stronger “small” large cardinal 
axioms?  

• Is there any place for “large” large cardinal axioms 
in these theories?



The End


