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Turing’s Thesis 
Solomon Feferman 

 

 

In the sole extended break from his life and varied career in England, Alan Turing spent 

the years 1936-1938 doing graduate work at Princeton University under the direction of 

Alonzo Church, the doyen of American logicians.  Those two years sufficed for him to 

complete a thesis and obtain the PhD.  The results of the thesis were published in 1939 

under the title “Systems of logic based on ordinals” [23].  That was the first systematic 

attempt to deal with the natural idea of overcoming the Gödelian incompleteness of 

formal systems by iterating the adjunction of statements--such as the consistency of the 

system--that “ought to” have been accepted but were not derivable; in fact these kinds of 

iterations can be extended into the transfinite.  As Turing put it beautifully in his 

introduction to [23]: 

 

The well-known theorem of Gödel (1931) shows that every system of logic is in a 

certain sense incomplete, but at the same time it indicates means whereby from a 

system L of logic a more complete system L′ may be obtained.  By repeating the 

process we get a sequence L, L1 = L′, L2 = L1′, … each more complete than the 

preceding.  A logic Lω may then be constructed in which the provable theorems 

are the totality of theorems provable with the help of the logics L, L1, L2, …  

Proceeding in this way we can associate a system of logic with any constructive 

ordinal.  It may be asked whether such a sequence of logics of this kind is 

complete in the sense that to any problem A there corresponds an ordinal α such 

that A is solvable by means of the logic Lα.  

 

Using an ingenious argument in pursuit of this aim, Turing obtained a striking yet 

equivocal partial completeness result that clearly called for further investigation.  But he 

did not continue that himself, and it would be some twenty years before the line of 

research he inaugurated would be renewed by others.  The paper itself received little 

attention in the interim, though it contained a number of original and stimulating ideas 
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and though Turing’s name had by then been well established through his earlier work on 

the concept of effective computability.   

 Here, in brief, is the story of what led Turing to Church, what was in his thesis, 

and what came after, both for him and for the subject.1 

 

From Cambridge to Princeton 

As an undergraduate at King’s College, Cambridge, from 1931 to 1934, Turing was 

attracted to many parts of mathematics, including mathematical logic. In 1935 Turing 

was elected a fellow of King’s College on the basis of a dissertation in probability theory, 

On the Gaussian error function, which contained his independent rediscovery of the 

central limit theorem.  Earlier in that year he began to focus on problems in logic through 

his attendance in a course on that subject by the topologist M. H. A. (Max) Newman.  

One of the problems from Newman’s course that captured Turing’s attention was the 

Entscheidungsproblem, the question whether there exists an effective method to decide, 

given any well-formed formula of the pure first-order predicate calculus, whether or not it 

is valid in all possible interpretations (equivalently, whether or not its negation is 

satisfiable in some interpretation).  This had been solved in the affirmative for certain 

special classes of formulas, but the general problem was still open when Turing began 

grappling with it.  He became convinced that the answer must be negative, but that in 

order to demonstrate the impossibility of a decision procedure, he would have to give an 

exact mathematical explanation of what it means to be computable by a strictly 

mechanical process.  He arrived at such an analysis by mid-April 1936 via the idea of 

what has come to be called a Turing machine, namely an idealized computational device 

following a finite table of instructions (in essence, a program) in discrete effective steps 

without limitation on time or space that might be needed for a computation.  Furthermore, 

he showed that even with such unlimited capacities, the answer to the general 

Entscheidungsproblem must be negative.  Turing quickly prepared a draft of his work 

entitled “On computable numbers, with an application to the Entscheidungsproblem;” 

                                                
1 I have written about this at somewhat greater length in [10]; that material has also been 
incorporated as an introductory note to Turing’s 1939 paper in the volume, Mathematical 
Logic [25] of his collected works.  In its biographical part I drew to a considerable extent 
on Andrew Hodges’ superb biography, Alan Turing. The Enigma [16].   
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Newman was at first skeptical of Turing’s analysis but then became convinced and 

encouraged its publication.   

 Neither Newman nor Turing were aware at that point that there were already two 

other proposals under serious consideration for analyzing the general concept of effective 

computability: one by Gödel called general recursiveness, building on an idea of 

Herbrand, and the other by Church, in terms of what he called the λ-calculus.2 In answer 

to the question: which functions of natural numbers are effectively computable, the 

Herbrand-Gödel approach was formulated in terms of finite systems of equations from 

which the values of the functions are to be deduced using some elementary rules of 

inference; since the functions to be defined can occur on both sides of the equations, this 

constitutes a general form of recursion.  Gödel explained this in lectures on the 

incompleteness results during his visit to the Princeton Institute for Advanced Study in 

1934, lectures that were attended by Church and his students Stephen C. Kleene and J. 

Barkley Rosser.  But Gödel only regarded general recursiveness as a “heuristic principle” 

and was not himself willing to commit to that proposed analysis.  Meanwhile Church had 

been exploring a different answer to the same question in terms of his λ-calculus--a 

fragment of a quite general formalism for the foundation of mathematics, whose 

fundamental notion is that of arbitrary functions rather than arbitrary sets.  The ‘λ’ comes 

from Church’s formalism according to which if t[x] is an expression with one or more 

occurrences of a variable x, then λx.t[x] is supposed to denote a function f whose value 

f(s) for each s is the result, t[s/x], of substituting s for x throughout t.3  In the λ-calculus, 

function application of one expression t to another s as argument is written in the form ts.  

Combining these, we have the basic evaluation axiom: (λx.t[x])s = t[s/x]. 

                                                
2 The development of ideas about computability in this period by Herbrand, Gödel, 
Church, Turing and Post has been much written about and can only be touched on here.  
For more detail I recommend the article by Kleene [17] and the articles by Hodges, 
Kleene, Gandy and Davis in Part I of Herken’s collection [15], among others.  One of the 
many good online sources with further links is at http://plato.stanford.edu/entries/church-
turing/, by B. J. Copeland. 
3 One must avoid the “collision” of free and bound variables in the process, i.e. no free 
variable z of s must end up within the scope of a ‘λz’; this can be done by renaming 
bound variables as necessary.   
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 Using a representation of the natural numbers in the λ-calculus, a function f is 

said to be λ-definable if there is an expression t such that for each pair of numerals n and 

m, tn evaluates out to m iff f(n) = m.  In conversations with Gödel, Church proposed λ-

definability as the precise explanation of effective computability (“Church’s Thesis”), but 

in Gödel’s view that was “thoroughly unsatisfactory.”  It was only through a chain of 

equivalences that ended up with Turing’s analysis that Gödel later came to accept it, 

albeit indirectly.  The first link in the chain was forged with the proof by Church and 

Kleene that λ-definability is equivalent to general recursiveness.  Thus when Church 

finally announced his “Thesis” in published form in 1936 [1], it was in terms of the latter.  

In that paper, Church applied his thesis to demonstrate the effective unsolvability of 

various mathematical and logical problems, including the decision problem for 

sufficiently strong formal systems.  And then in his follow-up paper [2] submitted 15 

April 1936--just around the time Turing was showing Newman his draft--Church proved 

the unsolvability of the Entscheidungsproblem for logic.  When news of this work 

reached Cambridge a month later, the initial reaction was great disappointment at being 

scooped, but it was agreed that Turing’s analysis was sufficiently different to still warrant 

publication.  After submitting it for publication toward the end of May 1936, Turing 

tacked on an appendix in August of that year in which he sketched the proof of 

equivalence of computability by a machine in his sense with that of λ-definability, thus 

forging the second link in the chain of equivalences ([21]). 

 In Church’s 1937 review of Turing’s paper, he wrote: 

 

As a matter of fact, there is involved here the equivalence of three different 

notions: computability by a Turing machine, general recursiveness in the sense of 

Herbrand-Gödel-Kleene, and λ-definability in the sense of Kleene and the present 

reviewer.  Of these, the first has the advantage of making the identification with 

effectiveness in the ordinary (not explicitly defined) sense evident immediately…  

The second and third have the advantage of suitability for embodiment in a 

system of symbolic logic.4 

 
                                                
4Church’s review appeared in J. Symbolic Logic 2 (1937), 42-43.  
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Thus was born what is now called the Church-Turing Thesis, according to which the 

effectively computable functions are exactly those computable by a Turing machine.5  

The (Church-)Turing Thesis is of course not to be confused with Turing’s thesis under 

Church, our main subject here.   

 

Turing in Princeton 

On Newman’s recommendation, Turing decided to spend a year studying with Church 

and he applied for one of Princeton’s Procter fellowships.  In the event he did not suceed 

in obtaining it, but even so he thought he could manage on his fellowship funds from 

King’s College of 300 pounds per annum, and so Turing came to Princeton at the end of 

September 1936.  The Princeton mathematics department had already been a leader on 

the American scene when it was greatly enriched in the early 30s by the establishment of 

the Institute for Advanced Study.  The two shared Fine Hall until 1940, so that the lines 

between them were blurred and there was significant interaction.  Among the 

mathematical leading lights that Turing found on his arrival were Einstein, von Neumann, 

Weyl at the Institute and Lefschetz in the department; the visitors that year included 

Courant and Hardy.  In logic, he had hoped to find—besides Church—Gödel, Bernays, 

Kleene and Rosser.  Gödel had indeed commenced a second visit in the fall of 1935 but 

left after a brief period due to illness; he was not to return until 1939.  Bernays (noted as 

Hilbert’s collaborator on his consistency program) had visited 1935-36, but did not visit 

the States again until after the war.  Kleene and Rosser had received their PhDs by the 

time Turing arrived and had left to take positions elsewhere.  So he was reduced to 

attending Church’s lectures, which he found ponderous and excessively precise; by 

contrast, Turing’s native style was rough-and-ready and prone to minor errors, and it is a 

question whether Church’s example was of any benefit in this respect.  They met from 

time to time, but apparently there were no sparks, since Church was retiring by nature 

and Turing was somewhat of a loner. 

 In the spring of 1937, Turing worked up for publication a proof in greater detail of 

the equivalence of machine computability with λ-definability [22].  He also published 

                                                
5 Gödel accepted the Church-Turing Thesis in that form in a number of lectures and 
publications thereafter.   
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two papers on group theory, including one on finite approximations of continuous groups 

that was of interest to von Neumann(cf. [24]).  Luther P. Eisenhart, who was then head of 

the mathematics department, urged Turing to stay on for a second year and apply again 

for the Procter fellowship (worth $2000 p.a.).  This time, supported by von Neumann 

who praised his work on almost periodic functions and continuous groups, Turing 

succeeded in obtaining the fellowship, and so decided to stay the extra year and do a PhD 

under Church.  Proposed as a thesis topic was the idea of ordinal logics that had been 

broached in Church’s course as a way to “escape” Gödel’s incompleteness theorems.   

 Turing, who had just turned 25, returned to England for the summer of 1937, 

where he devoted himself to three projects: finishing the computability/λ-definability 

paper, ordinal logics, and the Skewes number.  As to the latter, Littlewood had shown 

that π(x) − li(x) changes sign infinitely often, with an argument by cases, according to 

whether the Riemann Hypothesis is true or not; prior to that it had been conjectured that 

π(n) < li(n) for all n, in view of the massive numerical evidence into the billions in 

support of that.6  In 1933 Skewes had shown that li(n) < π(n) for some n < 103(34) (triple 

exponential to the base 10) if the Riemann Hypothesis is true. Turing hoped to lower 

Skewes’ bound or eliminate the Riemann Hypothesis; in the end he thought he had 

succeeded in doing both and prepared a draft but did not publish his work.7  He was to 

have a recurring interest in the R.H. in the following years, including devising a method 

for the practical computation of the zeros of the Riemann zeta function as explained in 

the article by Andrew R. Booker in this issue of the Notices.  

 Turing also made good progress on his thesis topic and devoted himself full time 

to it when he returned to Princeton in the fall, so that he ended up with a draft containing 

the main results by Christmas of 1937.  But then he wrote Philip Hall in March 1938 that 

the work on his thesis was “proving rather intractable, and I am always rewriting part of 

it.”8 Later he wrote that “Church made a number of suggestions which resulted in the 

thesis being expanded to an appalling length.”  One can well appreciate that Church 

                                                
6 li(x) is the (improper) integral from 0 to x of 1/logx and is asymptotic to π(x), the 
number of primes ≤ x.   
7 A paper based on Turing’s ideas, with certain corrections, was published after his death 
by Cohen and Mayhew [4]. 
8 Hodges [16], p. 144.  
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would not knowingly tolerate imprecise formulations or proofs, let alone errors, and the 

published version shows that Turing went far to meet such demands while retaining his 

distinctive voice and original ways of thinking.  Following an oral exam in May on which 

his performance was noted as “Excellent”, the PhD itself was granted in June 1938.  

 Turing made little use of the doctoral title in the following years, since it made no 

difference for his position at Cambridge.  But it could have been useful for the start of an 

academic career in America.  Von Neumann thought sufficiently highly of his 

mathematical talents to offer Turing a position as his assistant at the Institute.  Curiously, 

at that time von Neumann showed no knowledge or appreciation of his work in logic.  It 

was not until 1939 that he was to recognize the fundamental importance of Turing’s work 

on computability.  Then, toward the end of World War II, when von Neumann was 

engaged in the practical design and development of general purpose electronic digital 

computers in collaboration with the ENIAC team, he was to incorporate the key idea of 

Turing’s universal computing machine in a direct way.9   

 Von Neumann’s offer was quite attractive, but Turing’s stay in Princeton had not 

been a personally happy one, and he decided to return home despite the uncertain 

prospects aside from his fellowship at King’s and in face of the brewing rumors of war.  

After publishing the thesis work he did no more on that topic and went on to other things.  

Not long after his return to England, he joined a course at the Government Code and 

Cypher School, and that was to lead to his top secret work during the war at Bletchley 

Park on breaking the German Enigma Code.  This fascinating part of the story is told in 

full in Hodges’ biography [16], as is his subsequent career working to build actual 

computers, promote artificial intelligence, theorize about morphogenesis, and continue 

his work in mathematics.  Tragically, this ended with his death in 1954, a probable 

suicide.     

  

 

                                                
9 Its suggested implementation is in the Draft report on the EDVAC put out by the 
ENIAC team and signed by von Neumann; cf. Hodges [16], pp. 302-303; cf. also ibid., p. 
145, for von Neumann’s appreciation by 1939 of the significance of Turing’s work.   
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The thesis: Ordinal logics10 

What Turing calls a logic is nowadays more usually called a formal system, i.e. one 

prescribed by an effective specification of a language, set of axioms and rules of 

inference. Where Turing used ‘L’ for logics I shall use ‘S’ for formal systems.  Given an 

effective description of a sequence 〈Sn〉n ∈ N (N = {0, 1, 2, …}) of formal systems all of 

which share the same language and rules of inference, one can form a new system Sω = 

∪Sn (n ∈ N), by taking the effective union of their axiom sets.  If the sequence of Sn’s is 

obtained by iterating an effective passage from one system to the next, then that iteration 

can be continued to form Sω+1, … and so on into the transfinite.  This leads to the idea of 

an effective association of formal systems Sα with ordinals α.  Clearly that can only be 

done for denumerable ordinals, but to deal with limits in an effective way, it turns out that 

we must work not with ordinals per se, but with notations for ordinals.  In 1936, Church 

and Kleene [3] had introduced a system O of constructive ordinal notations, given by 

certain expressions in the λ-calculus.  A variant of this uses numerical codes a for such 

expressions, and associates with each a ∈ O a countable ordinal |a|.  For baroque reasons, 

1 was taken as the notation for 0, 2a  as a notation for the successor of |a|, and 3•5e for the 

limit of the sequence |an|, when this sequence is strictly increasing and when e is a code 

of a computable function ê with ê(n) = an for each n ∈ N.  The least ordinal not of the 

form |a| for some a ∈ O is the analogue, in terms of effective computability, of the least 

uncountable ordinal ω1, and is usually denoted by ω1
CK, where ‘CK’ refers to Church and 

Kleene.  By an ordinal logic S* = 〈Sa〉a ∈ O is meant any means of effectively associating 

with each a ∈ O a formal system Sa.  Note, for example, that there are many ways of 

forming a sequence of notations an whose limit is ω, given by all the different effectively 

computable strictly increasing subsequences of N.  So at limit ordinals α < ω1
CK we will 

have infinitely many representations of α and thus also for its successors.  An ordinal 

logic is said to be invariant if whenever |a| = |b| then Sa and Sb prove the same theorems.   

 In general, given any effective means of passing from a system S to an extension 

S′ of S, one can form an ordinal logic S* = 〈Sa〉a ∈ O which is such that for each a ∈ O and 

                                                
10 The background to the material of this section in Gödel’s incompleteness theorems is 
explained in my piece for the Notices [11]. 
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b = 2a, the successor of a, Sb = Sa′, and is further such that whenever a = 3•5e then Sa is 

the union of the sequence of Sê(n) for each n ∈ N.  In particular, for systems whose 

language contains that of Peano Arithmetic, PA, one can take S′ to be S ∪ {ConS}, where 

ConS formalizes the consistency statement for S; the associated ordinal logic S* thus 

iterates adjunction of consistency through all the constructive ordinal notations.  If one 

starts with PA as the initial system it may be seen that each Sa is consistent and so Sa′ is 

strictly stronger than Sa by Gödel’s 2nd incompleteness theorem.  The consistency 

statements are expressible in ∀(“for all”)-form, i.e. ∀x R(x) where R is an effectively 

decidable predicate, and so a natural question to raise is whether S* is complete for 

statements of that form, i.e. whether whenever ∀x R(x) is true in N then it is provable in 

Sa for some a ∈ O.  Turing’s main result for this ordinal logic was that that is indeed the 

case, in fact one can always choose such an a with |a| = ω + 1. His ingenious method of 

proof was, given R, to construct a sequence ê(n) which denotes n as long as (∀x ≤ n)R(x) 

holds, and which jumps to the successor of 3•5e when (∃x ≤ n)¬R(x).11  Let b = 3•5e and 

a = 2b. Now if ∀x R(x) is true, b ∈ O with |b| = ω.  In Sa we can reason as follows: if  

∀x R(x) were not true then Sb would be the union of systems that are eventually the same 

as Sa, so Sb would prove its own consistency and hence, by Gödel’s theorem, would be 

inconsistent. But Sa proves the consistency of Sb, so we must conclude that ∀x R(x) holds 

after all.   

 Turing recognized that this completeness proof is disappointing because it shifts 

the question of whether a ∀-statement is true to the question whether a number a actually 

belongs to O.  In fact, the general question, given a, is a ∈ O ?, turns out to be of higher 

logical complexity than any arithmetical statement, i.e. one formed by the unlimited 

iteration of universal and existential quantifiers, ∀ and ∃.  Another main result of 

Turing’s thesis is that for quite general ordinal logics, S* can’t be both complete for 

statements in ∀-form and invariant.  It is for these reasons that, above, I called his 

completeness results equivocal.  Even so, what Turing really hoped to obtain was 

completeness for statements in ∀∃(“for all, there exists”)-form.  His reason for 

                                                
11 Note that e is defined in terms of itself; this is made possible by Kleene’s index form of 
the recursion theorem.   
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concentrating on these, that he called “number-theoretical problems”, rather than 

considering arithmetical statements in general, is not clear.  This class certainly includes 

many number-theoretical statements (in the usual sense of the word) of mathematical 

interest, e.g. those, such as the twin prime conjecture, that say that an effectively 

decidable set C of natural numbers is infinite.  Also, as Turing pointed out, the question 

whether a given program for one of his machines computes a total function is in ∀∃-

form.  Of special note is his proof ([23], sec. 3) that the Riemann Hypothesis is a number-

theoretical problem in Turing’s sense.  This was certainly a novel observation for the 

time; actually, as shown by Georg Kreisel years later, it can even be expressed in ∀-

form.12  On the other hand, Turing’s class of number-theoretic problems does not include 

such statements as finiteness of the number of solutions of a diophantine equation (∃∀) or 

the statement of Waring’s problem (∀∃∀).   

 In sec. 4 Turing introduced a new idea that was to change the face of the general 

theory of computation (a.k.a. recursion theory) but the only use he made of it there was 

curiously inessential.  His aim was to produce an arithmetical problem which is not 

number-theoretical in his sense, i.e. not in ∀∃-form.  This is trivial by a diagonalization 

argument, since there are only countably many effective relations R(x, y) of which we 

could say that ∀x∃y R(x, y) holds.  Turing’s way of dealing with this, instead, is through 

the new notion of computation relative to an oracle.  As he puts it:  

 

Let us suppose that we are supplied with some unspecified means of solving 

number-theoretical [i.e., ∀∃] problems; a kind of oracle as it were.  … With the 

help of the oracle we could form a new kind of machine (call them o-machines), 

having as one of its fundamental processes that of solving a given number-

theoretic problem. 

 

He then showed that the problem of determining whether an o-machine terminates on any 

given input is an arithmetical problem not computable by any o-machine, and hence not 

solvable by the oracle itself.  Turing did nothing further with the idea of o-machines, 

                                                
12 A relatively perspicuous representation in that form may be found in Davis et al. [6] p. 
335.   
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either in this paper or afterward.  In 1944 Emil Post [20] took it as his basic notion for a 

theory of degrees of unsolvability, crediting Turing with the result that for any set of 

natural numbers there is another of higher degree of unsolvability.  This transformed the 

notion of computability from an absolute notion into a relative one that would lead to 

entirely new developments and eventually to vastly generalized forms of recursion 

theory.  Some of the basic ideas and results of the theory of effective reducibility of the 

membership problem for one set of numbers to another inaugurated by Turing and Post 

are explained in the article by Martin Davis in this issue of the Notices.  

 There are further interesting suggestions and asides in the thesis, such as 

consideration of possible constructive analogues of the Continuum Hypothesis.  Finally 

(as also mentioned by Barry Cooper in his review article), it contained provocative 

speculations concerning intuition vs. technical ingenuity in mathematical reasoning.  The 

relevance, according to Turing is that: 

 

When we have an ordinal logic, we are in a position to prove number-theoretic 

theorems by the intuitive steps of recognizing [natural numbers as notations for 

ordinals] …We want it to show quite clearly when a step makes use of intuition 

and when it is purely formal… It must be beyond all reasonable doubt that the 

logic leads to correct results whenever the intuitive steps [i.e., recognition of 

ordinals] are correct. 

 

This Turing had clearly accomplished with his formulation of the notion of ordinal logic 

and the construction of the particular S* obtained by iterating consistency statements.   

 One reason that the reception of Turing’s paper may have been so limited is that 

(no doubt at Church’s behest) it was formulated in terms of the λ-calculus, which makes 

expressions for ordinals and formal systems very hard to understand.  He could instead 

have followed Kleene, who wrote in his retrospective history [17]: “I myself, perhaps 

unduly influenced by rather chilly receptions from audiences around 1933-35 to 

disquisitions on λ-definability, chose, after general recursiveness had appeared, to put my 

work in that format. … I cannot complain about my audiences after 1935.”    
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Ordinal logics redux 

The problems left open in Turing’s thesis were attacked in my 1962 paper, “Transfinite 

recursive progressions of axiomatic theories” [7].  The title contains my rechristening of 

“ordinal logics” in order to give a more precise sense of the subject matter.  In the 

interests of perspicuity and in order to explain what Turing had accomplished, I also 

recast all the notions in terms of general recursive functions and recursive notions for 

ordinals rather than the λ-calculus.  Next I showed that Turing’s progression based on 

iteration of consistency statements is not complete for true ∀∃ statements, contrary to his 

hope.  In fact, the same holds for the even stronger progression obtained by iterating  

adjunction to a system S of the local reflection principle for S.  This is a scheme that 

formalizes, for each arithmetical sentence A, that if A is provable in S then A (is true).  

Then I showed that a progression S(U) based on the iteration of the uniform reflection 

principle is complete for all true arithmetical sentences.  The latter principle is a scheme 

that formalizes, given S and a formula A(x) that if A(n) is provable in S for each n, then 

∀x A(x) (is true).  One can also find a path P through O along which every true 

arithmetical sentence is provable in the progression S(U).  On the other hand, invariance 

fails badly in the sense that there are paths P′ through O for which there are true 

sentences in ∀-form not provable along that path, as shown in my paper with Spector 

[12].  The recent book Inexhaustibility [13] by Torkel Franzén contains an accessible 

introduction to [7], and his article [14] gives an interesting explanation (shorn of the 

offputting details) of what makes Turing’s and my completeness results work.   

 The problem raised by Turing of recognizing which expressions (or numbers) are 

actually notations for ordinals is dealt with in part through the concept of autonomous 

progressions of theories, obtained by imposing a boot-strap procedure. That allows one to 

go to a system Sa only if one already has a proof in a previously accepted system Sb that  

a ∈ O (or that a recursive ordering of order type corresponding to a is a well-ordering).  

Such progressions are not complete but have been used to propose characterizations of 

certain informal concepts of proof, such as that of finitist proof (Kreisel [18], [19]) and 

predicative proof (Feferman [8], [9]).   
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